-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathopal.py
executable file
·649 lines (577 loc) · 25 KB
/
opal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
#!/usr/bin/env python3
'''
Runs the Opal LDPC k-mer hash based metagenomic classifier. Based off the paper
"Low-density locality-sensitive hashing boosts metagenomic binning" by Yunan
Luo, Jianyeng Zeng, Bonnie Berger, and Jian Peng in the conference Recomb 2016.
Journal version yet to appear.
This Python wrapper was written by Yun William Yu <[email protected]>,
and is based off an earlier set of prototyping Bash scripts by Yunan Luo.
The implementation of the metagenomic binning is adapted from the source code
of K. Vervier, P. Mahe, M. Tournoud, J.-B. Veyrieras, and J.-P. Vert.
Large-scale Machine Learning for Metagenomics Sequence Classification ,
Technical report HAL-01151453, May, 2015. This code is included in the util/
directory, with modifications to enable using the Opal Gallagher code based
hashes in util/ldpc.py.
The code from Vervier, et al, requires the Genetic Data Analysis Library, which
we have included a copy of under util/ext/ for ease of installation.
This pipeline depends on Python scikit-learn and on Vowpal Wabbit. Vowpal
Wabbit must be properly installed in the system path.
'''
__version__ = "1.0.0"
import argparse
import os
import sys
if sys.version_info[0] == 2:
raise Exception("Python 2 is not compatible; please use Python 3.")
import glob
import subprocess
import random
import threading
import pandas as pd
import numpy as np
from sklearn.metrics import precision_score, recall_score
from datetime import datetime
script_loc = os.path.realpath(__file__)
sys.path.append(os.path.join(os.path.dirname(script_loc),'util'))
import ldpc
import fasta2skm
import drawfrag
my_env = os.environ.copy()
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
def unique_lines(file):
'''gets number of unique lines in file'''
seen = set()
with open(file) as f:
for line in f:
seen.add(line)
return len(seen)
def safe_makedirs(directory):
if not os.path.exists(directory):
os.makedirs(directory)
return 0
def extract_column_two(infile, outfile):
"""cut -f2 infile > outfile"""
with open(infile, 'r') as inf:
with open(outfile, 'w') as outf:
for line in inf:
parts = line.split()
if len(parts) > 1:
print(parts[1], file=outf)
else:
print('',file=outf)
def vw_class_to_taxid(inputfile, dicofile, outputfile):
'''Converts vw IDs in a newline delimited list (inputfile) to
outputfile using the mapping specified in dicofile'''
dico = {}
with open(dicofile, "r") as fin:
for line in fin:
txid, vwid = line.strip().split()[:2]
dico[vwid] = txid
predout = open(outputfile, "w")
with open(inputfile, "r") as fin:
for line in fin:
predout.write("%s\n"%(dico[str(int(float(line.strip())))]))
predout.close()
def get_fasta_and_taxid(directory):
'''finds the 'first' fasta file in directory, and returns a tuple with
it and the matching named taxid file in the directory if both exist'''
try:
fasta = glob.glob(directory + "/*.fasta")[0]
except IndexError:
raise RuntimeError("Could not find fasta file in:" + directory)
taxids = os.path.splitext(fasta)[0] + ".taxid"
if not os.path.isfile(taxids):
raise RuntimeError("Could not find matching taxid: " + taxids)
return [fasta, taxids]
def get_final_model(directory):
'''gets a 'final' model from a directory. Note, will match the first
file ending in _final.model'''
try:
model = glob.glob(directory + "/*_final.model")[0]
except IndexError:
raise RuntimeError("Could not find final model file in: " + directory)
return model
def evaluate_predictions(reffile, predfile):
'''Evaluates how good a predicted list is compared to a reference gold standard'''
with open(predfile, "r") as fin:
pred = fin.read().splitlines()
with open(reffile, "r") as fin:
ref = fin.read().splitlines()
#pred = map(int, pred)
#ref = map(int, ref)
#correct = np.equal(pred, ref)
correct = [x==y for x, y in zip(pred,ref)]
perf = pd.DataFrame({"pred":pred, "ref":ref, "correct":correct})
tmp = perf.groupby("ref")
species = tmp["correct"].agg(np.mean)
micro = np.mean(correct)
macro = np.mean(species)
median = np.median(species)
print("micro = {:.4f}".format(micro))
print("macro = {:.4f}".format(macro))
print("median = {:.4f}".format(median))
#precision = precision_score(ref, pred, average='micro')
#recall = recall_score(ref, pred, average='micro')
#print("precision = {:.4f}".format(precision))
#print("recall = {:.4f}".format(recall))
sys.stdout.flush()
def frag(test_dir, frag_dir, args):
'''Draws fragments from the fasta file found in test_dir. Note that
there must be a taxid file of the same basename with matching ids for
each of the fasta lines.
test_dir (string): must be a path to a directory with a single fasta
and taxid file
frag_dir (string): must be a path to an output directory
Unpacking args:
frag_length (int): length of fragments to be drawn
coverage (float): fraction of times each location is to be covered
by drawn fragments
'''
# Unpack args
frag_length = args.frag_length
coverage = args.coverage
# Finish unpacking args
fasta, taxids = get_fasta_and_taxid(test_dir)
safe_makedirs(frag_dir)
fasta_out = os.path.join(frag_dir, "test.fragments.fasta")
gi2taxid_out = os.path.join(frag_dir, "test.fragments.gi2taxid")
taxid_out = os.path.join(frag_dir, "test.fragments.taxid")
starttime = datetime.now()
print(
'''================================================
Drawing fragments
{:%Y-%m-%d %H:%M:%S}
'''.format(starttime) + '''
frag_length = {frag_length}
coverage = {coverage}
------------------------------------------------
Fasta input: {fasta}
taxids input: {taxids}
Fasta output: {fasta_out}
gi2taxid output:{gi2taxid_out}
taxids output: {taxid_out}'''.format(
frag_length=frag_length, coverage=coverage, fasta=fasta,
taxids=taxids, fasta_out=fasta_out, gi2taxid_out=gi2taxid_out,
taxid_out=taxid_out)
)
sys.stdout.flush()
# set seed (for reproducibility)
seed = 42
# draw fragments
drawfrag.main([
"-i", fasta,
"-t", taxids,
"-l", str(frag_length),
"-c", str(coverage),
"-o", fasta_out,
"-g", gi2taxid_out,
"-s", str(seed)])
# extract taxids
extract_column_two(gi2taxid_out, taxid_out)
print('''------------------------------------------------
Total wall clock runtime (sec): {}
================================================'''.format(
(datetime.now() - starttime).total_seconds()))
sys.stdout.flush()
return 0
def train(ref_dir, model_dir, args):
'''Draws fragments from the fasta file found in ref_dir. Note that
there must be a taxid file of the same basename with matching ids for
each of the fasta lines.
ref_dir (string): must be a path to a directory with a single fasta
and taxid file
model_dir (string): must be a path to an output directory
Unpacking args:
frag_length (int): length of fragments to be drawn
coverage (float): fraction of times each location is to be covered
by drawn fragments
kmer (int): size of k-mers used
row_weight (int): how many positions will be randomly chosen in the
contiguous k-mer (k-mer length should be multiple
of row_weight)
num_hash (int): number of hashing functions
num_batches (int): number of times to run vowpal_wabbit
num_passes (int): number of passes within vowpal_wabbit
'''
# Unpack args
frag_length = args.frag_length
coverage = args.coverage
kmer = args.kmer
row_weight = args.row_weight
hierarchical = args.hierarchical_weight # only comes into play if > 0
num_hash = args.num_hash
num_batches = args.num_batches
num_passes = args.num_passes
bits = args.bits
lambda1 = args.lambda1
lambda2 = args.lambda2
reverse = args.reverse_complement
# Finish unpacking args
fasta, taxids = get_fasta_and_taxid(ref_dir)
starttime = datetime.now()
if kmer % row_weight != 0:
raise ValueError("Row weight [{}] must divide into k-mer length [{}].".format(row_weight, kmer))
if (hierarchical > 0):
if kmer % hierarchical != 0:
raise ValueError("Hierarchy middle level [{}] must divide into k-mer length [{}].".format(hierarchical, kmer))
if hierarchical % row_weight != 0:
raise ValueError("Row weight[{}] must divide into middle hierarchical structure weight [{}].".format(row_weight, hierarchical))
print(
'''================================================
Training using Opal + vowpal-wabbit
{:%Y-%m-%d %H:%M:%S}
'''.format(starttime) + '''
frag_length = {frag_length}
coverage: {coverage}
reverse-complements: {reverse}
k-mer length: {kmer}'''.format(
frag_length=frag_length,
coverage=coverage,
kmer=kmer,
reverse=reverse
))
if hierarchical > 0:
print('''hierarchical: {}'''.format(hierarchical))
print('''row weight: {row_weight}
num hashes: {num_hash}
num batches: {num_batches}
num passes: {num_passes}
------------------------------------------------
Fasta input: {fasta}
taxids input: {taxids}
------------------------------------------------'''.format(
row_weight=row_weight,
num_hash=num_hash,
num_batches=num_batches,
num_passes=num_passes,
fasta=fasta,
taxids=taxids)
)
sys.stdout.flush()
num_labels = unique_lines(taxids)
print("Number labels: {}".format(num_labels))
sys.stdout.flush()
safe_makedirs(model_dir)
# define output "dictionary" : taxid <--> vw classes
dico = os.path.join(model_dir, "vw-dico.txt")
# define model prefix
model_prefix = os.path.join(model_dir, "vw-model")
# generate LDPC spaced pattern
pattern_file = os.path.join(model_dir, "patterns.txt")
ldpc.ldpc_write(k=kmer, t=row_weight, _m=num_hash, d=pattern_file)
seed = 420
final_model_file = model_prefix + "_final.model"
# Initialize Vowpal_Wabbit model
vw_params_base = ["vw",
"--random_seed", str(seed),
"-f", final_model_file,
"--save_resume",
"--oaa", str(num_labels),
"--bit_precision", str(bits),
"--l1", str(lambda1),
"--l2", str(lambda2)]
vw_params_passes = [
"--cache_file", model_prefix + ".cache",
"--passes", str(num_passes)]
vw_params = vw_params_base
if num_passes > 1:
vw_params = vw_params + vw_params_passes
vwps_training_log = model_prefix + "_vwps.log"
vwps_log_fh_write = open(vwps_training_log, 'w')
vwps_log_fh_tail = open(vwps_training_log, 'r')
vwps = subprocess.Popen(vw_params, env=my_env,
stdin=subprocess.PIPE, stdout=vwps_log_fh_write,
stderr=vwps_log_fh_write)
for i in range(num_batches):
seed = seed + 1
batch_prefix = os.path.join(model_dir, "train.batch-{}".format(i))
fasta_batch = batch_prefix + ".fasta"
gi2taxid_batch = batch_prefix + ".gi2taxid"
taxid_batch = batch_prefix + ".taxid"
# draw fragments
print("Drawing fragments for batch {}".format(i))
drawfrag.main([
"-i", fasta,
"-t", taxids,
"-l", str(frag_length),
"-c", str(coverage),
"-o", fasta_batch,
"-g", gi2taxid_batch,
"-s", str(seed)])
# extract taxids
extract_column_two(gi2taxid_batch, taxid_batch)
fasta2skm_namespace = argparse.Namespace(
input=fasta_batch,
taxid=taxid_batch,
kmer=kmer,
dico=dico,
output=None,
pattern=pattern_file,
reverse=reverse)
print("Getting training set ...")
sys.stdout.flush()
skms = fasta2skm.main_generator(fasta2skm_namespace)
training_list = [line.rstrip('\n') for line in skms]
print("Shuffling training set ...")
sys.stdout.flush()
random.shuffle(training_list)
print("Sending data to vowpal_wabbit ...")
batch_i = 0
for item in training_list:
vwps.stdin.write("{}\n".format(item).encode())
batch_i = batch_i + 1
if batch_i % 100000 == 0:
latest_data = vwps_log_fh_tail.read()
if latest_data:
print(latest_data, end="")
latest_data =vwps_log_fh_tail.read()
if latest_data:
print(latest_data, end="")
os.remove(fasta_batch)
os.remove(taxid_batch)
os.remove(gi2taxid_batch)
vwps_log_fh_tail.close()
vwps_log_fh_write.close()
vwps.stdin.close()
#print("vowpal_wabbit running with to-be-saved model: {}".format(final_model_file))
vwps.wait()
print('''------------------------------------------------
Total wall clock runtime (sec): {}
================================================'''.format(
(datetime.now() - starttime).total_seconds()))
sys.stdout.flush()
return 0
def predict(model_dir, test_dir, predict_dir, args):
'''Draws fragments from the fasta file found in data_dir. Note that
there must be a taxid file of the same basename with matching ids for
each of the fasta lines.
ref_dir (string): must be a path to a directory with a single fasta
and taxid file
model_dir (string): must be a path to a directory with a vw model file
predict_dir (string):output directory of predictions
Unpacking args:
kmer (int): size of k-mers used
Returns a tuple with (reffile, predicted_labels_file) for easy input
into evaluate_predictions.
'''
# Unpack args
kmer = args.kmer
reverse = args.reverse_complement
# Finish unpacking args
# Don't need to get taxids until eval
#fasta, taxids = get_fasta_and_taxid(test_dir)
try:
fasta = glob.glob(test_dir + "/*.fasta")[0]
except:
raise RuntimeError("No fasta file found in: " + test_dir)
model = get_final_model(model_dir)
dico = os.path.join(model_dir, "vw-dico.txt")
pattern_file = os.path.join(model_dir, "patterns.txt")
starttime = datetime.now()
print(
'''================================================
Predicting using Opal + vowpal-wabbit
{:%Y-%m-%d %H:%M:%S}
'''.format(starttime) + '''
k-mer length: {kmer}
------------------------------------------------
Fasta input: {fasta}
Model used: {model}
Dict used: {dico}
LDPC patterns: {pattern_file}
reverse-complements: {reverse}
------------------------------------------------'''.format(
kmer=kmer,
fasta=fasta,
model=model,
dico=dico,
pattern_file=pattern_file,
reverse=reverse)
)
sys.stdout.flush()
safe_makedirs(predict_dir)
prefix = os.path.join(predict_dir, "test.fragments-db")
prediction_file = prefix + ".preds.vw"
# get vw predictions
vw_param_list = ["vw", "-t",
"-i", model,
"-p", prefix + ".preds.vw"]
vwps_training_log = prefix + "_vwps.log"
vwps_log_fh_write = open(vwps_training_log, 'w')
vwps_log_fh_tail = open(vwps_training_log, 'r')
vwps = subprocess.Popen(vw_param_list, env=my_env,
stdin=subprocess.PIPE, stdout=vwps_log_fh_write,
stderr=vwps_log_fh_write)
fasta2skm_namespace = argparse.Namespace(
input=fasta,
taxid=None,
kmer=kmer,
dico=None,
output=None,
pattern=pattern_file,
reverse=reverse)
skms = fasta2skm.main_generator(fasta2skm_namespace)
batch_i = 0
for item in skms:
vwps.stdin.write("{}".format(item).encode())
batch_i = batch_i + 1
if batch_i % 100000 == 0:
latest_data = vwps_log_fh_tail.read()
if latest_data:
print(latest_data, end="")
latest_data =vwps_log_fh_tail.read()
if latest_data:
print(latest_data, end="")
vwps_log_fh_tail.close()
vwps_log_fh_write.close()
vwps.stdin.close()
vwps.wait()
# Convert back to standard taxonomic IDs instead of IDs
vw_class_to_taxid(prediction_file, dico, prefix + '.preds.taxid')
print('''------------------------------------------------
Predicted labels: {pl}
Total wall clock runtime (sec): {s}
================================================'''.format(
pl=prefix + '.preds.taxid',
s=(datetime.now() - starttime).total_seconds()))
sys.stdout.flush()
return (prefix + '.preds.taxid')
def parse_extra(parser, namespace):
namespaces = []
extra = namespace.extra
while extra:
n = parser.parse_args(extra)
extra = n.extra
namespaces.append(n)
return namespaces
class ArgClass:
'''So I don't have to duplicate argument info'''
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
def main(argv):
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter,
description=__doc__)
parser.add_argument('--version', action='version',
version='%(prog)s {version}'.format(version=__version__))
# Shared arguments
frag_length_arg = ArgClass("-l", "--frag-length",
help="length of fragments to be drawn from fasta",
type=int, default=64)
kmer_arg = ArgClass("-k", "--kmer", help="length of k-mers used",
type=int, default=64)
coverage_arg = ArgClass("-c", "--coverage", help="""number/fraction of
times each location in a fragment should be covered by a k-mer""",
type=float, default=15.0)
reverse_complement_arg = ArgClass("-r", "--reverse-complement", help="""Also trains and evaluates on reverse complements of ACGT DNA strings""",
action="store_true")
hierarchical_arg = ArgClass("--hierarchical-weight",
help="intermediate organization of positions chosen in the k-mer in row_weight; should be a multiple of row_weight and a divisor of k-mer length if set", type=int, default=-1)
row_weight_arg = ArgClass("--row-weight", help="""the number of positions
that will be randomly chosen in the contiguous k-mer; k-mer
length should be a multiple of row_weight""", type=int, default=16)
num_hash_arg = ArgClass("--num-hash", help="""number of k-mer hashing
functions to get features""", type=int, default=8)
num_batches_arg = ArgClass("--num-batches", help="""Number of times to
generate a random batch of training data for VW""",
type=int, default=1)
num_passes_arg = ArgClass("--num-passes",
help="Number of VW passes in each training batch",
type=int, default=1)
bits_arg = ArgClass("--bits", help="Number of bits used in VW model",
type=int, default=31)
lambda1_arg = ArgClass("--lambda1", help="VW model lambda1 training parameter", type=float, default=0.)
lambda2_arg = ArgClass("--lambda2", help="VW model lambda2 training parameter", type=float, default=0.)
subparsers = parser.add_subparsers(help="sub-commands", dest="mode")
parser_frag = subparsers.add_parser("frag", help="Fragment a fasta file into substrings for training/testing",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_frag.add_argument("test_dir", help="Input directory for test data")
parser_frag.add_argument("frag_dir", help="Output directory for fasta fragments")
parser_frag.add_argument(*frag_length_arg.args, **frag_length_arg.kwargs)
parser_frag.add_argument(*coverage_arg.args, **coverage_arg.kwargs)
parser_train = subparsers.add_parser("train", help="Train a Vowpal Wabbit model using Opal hashes",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_train.add_argument("train_dir", help="Input directory for train data")
parser_train.add_argument("model_dir", help="Output directory for VW model")
parser_train.add_argument(*frag_length_arg.args, **frag_length_arg.kwargs)
parser_train.add_argument(*coverage_arg.args, **coverage_arg.kwargs)
parser_train.add_argument(*kmer_arg.args, **kmer_arg.kwargs)
parser_train.add_argument(*reverse_complement_arg.args, **reverse_complement_arg.kwargs)
parser_train.add_argument(*num_batches_arg.args, **num_batches_arg.kwargs)
parser_train.add_argument(*num_passes_arg.args, **num_passes_arg.kwargs)
parser_train.add_argument(*num_hash_arg.args, **num_hash_arg.kwargs)
parser_train.add_argument(*row_weight_arg.args, **row_weight_arg.kwargs)
parser_train.add_argument(*hierarchical_arg.args, **hierarchical_arg.kwargs)
parser_train.add_argument(*bits_arg.args, **bits_arg.kwargs)
parser_train.add_argument(*lambda1_arg.args, **lambda1_arg.kwargs)
parser_train.add_argument(*lambda2_arg.args, **lambda2_arg.kwargs)
parser_predict = subparsers.add_parser("predict", help="Predict metagenomic classifications given a Opal/VW model",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_predict.add_argument("model_dir", help="Input directory for VW model")
parser_predict.add_argument("test_dir", help="Input directory for already fragmented test data")
parser_predict.add_argument("predict_dir", help="Output directory for predictions")
parser_predict.add_argument(*reverse_complement_arg.args, **reverse_complement_arg.kwargs)
parser_predict.add_argument(*kmer_arg.args, **kmer_arg.kwargs)
parser_eval = subparsers.add_parser('eval', help="Evaluate quality of predictions given a reference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_eval.add_argument("reference_file", help="Gold standard labels")
parser_eval.add_argument("predicted_labels", help="Predicted labels")
parser_simulate = subparsers.add_parser('simulate', help=
'''Run a full pipeline of frag, train, predict, and eval to
determine how good a model is under particular parameter
ranges''', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_simulate.add_argument("test_dir", help="Input directory for test data")
parser_simulate.add_argument("train_dir", help="Input directory for train data")
parser_simulate.add_argument("out_dir", help="Output directory for all steps")
parser_simulate.add_argument("--do-not-fragment", help="If set, will use test_dir fasta files as is without fragmenting", action="store_true")
parser_simulate.add_argument(*frag_length_arg.args, **frag_length_arg.kwargs)
parser_simulate.add_argument(*coverage_arg.args, **coverage_arg.kwargs)
parser_simulate.add_argument(*kmer_arg.args, **kmer_arg.kwargs)
parser_simulate.add_argument(*reverse_complement_arg.args, **reverse_complement_arg.kwargs)
parser_simulate.add_argument(*num_batches_arg.args, **num_batches_arg.kwargs)
parser_simulate.add_argument(*num_passes_arg.args, **num_passes_arg.kwargs)
parser_simulate.add_argument(*num_hash_arg.args, **num_hash_arg.kwargs)
parser_simulate.add_argument(*row_weight_arg.args, **row_weight_arg.kwargs)
parser_simulate.add_argument(*hierarchical_arg.args, **hierarchical_arg.kwargs)
parser_simulate.add_argument(*bits_arg.args, **bits_arg.kwargs)
parser_simulate.add_argument(*lambda1_arg.args, **lambda1_arg.kwargs)
parser_simulate.add_argument(*lambda2_arg.args, **lambda2_arg.kwargs)
args = parser.parse_args(argv)
print(args)
sys.stdout.flush()
mode = args.mode
if (mode == "simulate"):
fullstarttime = datetime.now()
print("Full simulation")
print("{:%Y-%m-%d %H:%M:%S}".format(fullstarttime))
print("Fragment mode: {}".format(not args.do_not_fragment))
output_dir = args.out_dir
frag_dir = os.path.join(output_dir, '1frag')
model_dir = os.path.join(output_dir, '2model')
predict_dir = os.path.join(output_dir, '3predict')
if args.do_not_fragment:
train(args.train_dir, model_dir, args)
pf = predict(model_dir, args.test_dir, predict_dir, args)
_, rf = get_fasta_and_taxid(args.test_dir)
else:
frag(args.test_dir, frag_dir, args)
train(args.train_dir, model_dir, args)
pf = predict(model_dir, frag_dir, predict_dir, args)
_, rf = get_fasta_and_taxid(frag_dir)
print("Evaluation reference file: " + rf)
sys.stdout.flush()
evaluate_predictions(rf, pf)
print("Total full sim wall clock runtime (sec): {}".format(
(datetime.now() - fullstarttime).total_seconds()))
elif mode == "frag":
frag(args.test_dir, args.frag_dir, args)
elif mode == "train":
train(args.train_dir, args.model_dir, args)
elif mode == "predict":
predict(args.model_dir, args.test_dir, args.predict_dir, args)
elif mode == "eval":
evaluate_predictions(args.reference_file, args.predicted_labels)
if __name__ == "__main__":
main(sys.argv[1:])