From 1e0aa7b11d49c2886a0c24a003201d870fb0d1ed Mon Sep 17 00:00:00 2001 From: Heng Li Date: Mon, 30 Jul 2012 12:13:42 -0400 Subject: [PATCH] Removed kfunc, kmin and krand Each of these three libraries consists of a couple of hundred lines of code. I think it does not harm too much if I put them together. I do not like too many files... --- README | 4 +- kfunc.c | 162 -------------------------------------------------------- kmin.c | 106 ------------------------------------ kmin.h | 44 --------------- krand.c | 77 --------------------------- krand.h | 25 --------- 6 files changed, 1 insertion(+), 417 deletions(-) delete mode 100644 kfunc.c delete mode 100644 kmin.c delete mode 100644 kmin.h delete mode 100644 krand.c delete mode 100644 krand.h diff --git a/README b/README index 647b2866..bfd48258 100644 --- a/README +++ b/README @@ -26,9 +26,7 @@ ksa.c Constructing suffix arrays for strings with multiple sentinels knetfile.{h,c} Random access to remote files kopen.c Smart stream opening -kfunc.c Special mathematical functions -krand.{h,c} Pseudo-random number generator mt19937 -kmin.{h,c} Derivative-free non-linear programming +kmath.{h,c} Numerical routines khmm.{h,c} Basic HMM library ksw.(h,c} Smith-Waterman using SSE2 knhx.{h,c} Newick format parser diff --git a/kfunc.c b/kfunc.c deleted file mode 100644 index a637b6ca..00000000 --- a/kfunc.c +++ /dev/null @@ -1,162 +0,0 @@ -#include - - -/* Log gamma function - * \log{\Gamma(z)} - * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245 - */ -double kf_lgamma(double z) -{ - double x = 0; - x += 0.1659470187408462e-06 / (z+7); - x += 0.9934937113930748e-05 / (z+6); - x -= 0.1385710331296526 / (z+5); - x += 12.50734324009056 / (z+4); - x -= 176.6150291498386 / (z+3); - x += 771.3234287757674 / (z+2); - x -= 1259.139216722289 / (z+1); - x += 676.5203681218835 / z; - x += 0.9999999999995183; - return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5); -} - -/* complementary error function - * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt - * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66 - */ -double kf_erfc(double x) -{ - const double p0 = 220.2068679123761; - const double p1 = 221.2135961699311; - const double p2 = 112.0792914978709; - const double p3 = 33.912866078383; - const double p4 = 6.37396220353165; - const double p5 = .7003830644436881; - const double p6 = .03526249659989109; - const double q0 = 440.4137358247522; - const double q1 = 793.8265125199484; - const double q2 = 637.3336333788311; - const double q3 = 296.5642487796737; - const double q4 = 86.78073220294608; - const double q5 = 16.06417757920695; - const double q6 = 1.755667163182642; - const double q7 = .08838834764831844; - double expntl, z, p; - z = fabs(x) * M_SQRT2; - if (z > 37.) return x > 0.? 0. : 2.; - expntl = exp(z * z * - .5); - if (z < 10. / M_SQRT2) // for small z - p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0) - / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0); - else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65))))); - return x > 0.? 2. * p : 2. * (1. - p); -} - -/* The following computes regularized incomplete gamma functions. - * Formulas are taken from Wiki, with additional input from Numerical - * Recipes in C (for modified Lentz's algorithm) and AS245 - * (http://lib.stat.cmu.edu/apstat/245). - * - * A good online calculator is available at: - * - * http://www.danielsoper.com/statcalc/calc23.aspx - * - * It calculates upper incomplete gamma function, which equals - * kf_gammaq(s,z)*tgamma(s). - */ - -#define KF_GAMMA_EPS 1e-14 -#define KF_TINY 1e-290 - -// regularized lower incomplete gamma function, by series expansion -static double _kf_gammap(double s, double z) -{ - double sum, x; - int k; - for (k = 1, sum = x = 1.; k < 100; ++k) { - sum += (x *= z / (s + k)); - if (x / sum < KF_GAMMA_EPS) break; - } - return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum)); -} -// regularized upper incomplete gamma function, by continued fraction -static double _kf_gammaq(double s, double z) -{ - int j; - double C, D, f; - f = 1. + z - s; C = f; D = 0.; - // Modified Lentz's algorithm for computing continued fraction - // See Numerical Recipes in C, 2nd edition, section 5.2 - for (j = 1; j < 100; ++j) { - double a = j * (s - j), b = (j<<1) + 1 + z - s, d; - D = b + a * D; - if (D < KF_TINY) D = KF_TINY; - C = b + a / C; - if (C < KF_TINY) C = KF_TINY; - D = 1. / D; - d = C * D; - f *= d; - if (fabs(d - 1.) < KF_GAMMA_EPS) break; - } - return exp(s * log(z) - z - kf_lgamma(s) - log(f)); -} - -double kf_gammap(double s, double z) -{ - return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z); -} - -double kf_gammaq(double s, double z) -{ - return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z); -} - -/* Regularized incomplete beta function. The method is taken from - * Numerical Recipe in C, 2nd edition, section 6.4. The following web - * page calculates the incomplete beta function, which equals - * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b): - * - * http://www.danielsoper.com/statcalc/calc36.aspx - */ -static double kf_betai_aux(double a, double b, double x) -{ - double C, D, f; - int j; - if (x == 0.) return 0.; - if (x == 1.) return 1.; - f = 1.; C = f; D = 0.; - // Modified Lentz's algorithm for computing continued fraction - for (j = 1; j < 200; ++j) { - double aa, d; - int m = j>>1; - aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1)) - : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m)); - D = 1. + aa * D; - if (D < KF_TINY) D = KF_TINY; - C = 1. + aa / C; - if (C < KF_TINY) C = KF_TINY; - D = 1. / D; - d = C * D; - f *= d; - if (fabs(d - 1.) < KF_GAMMA_EPS) break; - } - return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f; -} -double kf_betai(double a, double b, double x) -{ - return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x); -} - -#ifdef KF_MAIN -#include -int main(int argc, char *argv[]) -{ - double x = 5.5, y = 3; - double a, b; - printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x)); - printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y)); - a = 2; b = 2; x = 0.5; - printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b))); - return 0; -} -#endif diff --git a/kmin.c b/kmin.c deleted file mode 100644 index 99ace79a..00000000 --- a/kmin.c +++ /dev/null @@ -1,106 +0,0 @@ -/* The MIT License - - Copyright (c) 2008, 2010 by Attractive Chaos - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - "Software"), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be - included in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS - BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN - ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - SOFTWARE. -*/ - -/* Hooke-Jeeves algorithm for nonlinear minimization - - Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and - the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the - papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM - 6(6):313-314). The original algorithm was designed by Hooke and - Jeeves (ACM 8:212-229). This program is further revised according to - Johnson's implementation at Netlib (opt/hooke.c). - - Hooke-Jeeves algorithm is very simple and it works quite well on a - few examples. However, it might fail to converge due to its heuristic - nature. A possible improvement, as is suggested by Johnson, may be to - choose a small r at the beginning to quickly approach to the minimum - and a large r at later step to hit the minimum. - */ - -#include -#include -#include -#include "kmin.h" - -static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls) -{ - int k, j = *n_calls; - double ftmp; - for (k = 0; k != n; ++k) { - x1[k] += dx[k]; - ftmp = func(n, x1, data); ++j; - if (ftmp < fx1) fx1 = ftmp; - else { /* search the opposite direction */ - dx[k] = 0.0 - dx[k]; - x1[k] += dx[k] + dx[k]; - ftmp = func(n, x1, data); ++j; - if (ftmp < fx1) fx1 = ftmp; - else x1[k] -= dx[k]; /* back to the original x[k] */ - } - } - *n_calls = j; - return fx1; /* here: fx1=f(n,x1) */ -} - -double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls) -{ - double fx, fx1, *x1, *dx, radius; - int k, n_calls = 0; - x1 = (double*)calloc(n, sizeof(double)); - dx = (double*)calloc(n, sizeof(double)); - for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */ - dx[k] = fabs(x[k]) * r; - if (dx[k] == 0) dx[k] = r; - } - radius = r; - fx1 = fx = func(n, x, data); ++n_calls; - for (;;) { - memcpy(x1, x, n * sizeof(double)); /* x1 = x */ - fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls); - while (fx1 < fx) { - for (k = 0; k != n; ++k) { - double t = x[k]; - dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]); - x[k] = x1[k]; - x1[k] = x1[k] + x1[k] - t; - } - fx = fx1; - if (n_calls >= max_calls) break; - fx1 = func(n, x1, data); ++n_calls; - fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls); - if (fx1 >= fx) break; - for (k = 0; k != n; ++k) - if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break; - if (k == n) break; - } - if (radius >= eps) { - if (n_calls >= max_calls) break; - radius *= r; - for (k = 0; k != n; ++k) dx[k] *= r; - } else break; /* converge */ - } - free(x1); free(dx); - return fx1; -} diff --git a/kmin.h b/kmin.h deleted file mode 100644 index 369019ea..00000000 --- a/kmin.h +++ /dev/null @@ -1,44 +0,0 @@ -/* - Copyright (c) 2008, 2010 by Attractive Chaos - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - "Software"), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be - included in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS - BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN - ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - SOFTWARE. -*/ - -#ifndef KMIN_H -#define KMIN_H - -#define KMIN_RADIUS 0.5 -#define KMIN_EPS 1e-7 -#define KMIN_MAXCALL 50000 - -typedef double (*kmin_f)(int, double*, void*); - -#ifdef __cplusplus -extern "C" { -#endif - - double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/krand.c b/krand.c deleted file mode 100644 index 687b7db5..00000000 --- a/krand.c +++ /dev/null @@ -1,77 +0,0 @@ -/* - 64-bit Mersenne Twister pseudorandom number generator. Adapted from: - - http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c - - which was written by Takuji Nishimura and Makoto Matsumoto and released - under the 3-clause BSD license. -*/ - -#include -#include "krand.h" - -#define KR_NN 312 -#define KR_MM 156 -#define KR_UM 0xFFFFFFFF80000000ULL /* Most significant 33 bits */ -#define KR_LM 0x7FFFFFFFULL /* Least significant 31 bits */ - -struct _krand_t { - int mti; - krint64_t mt[KR_NN]; -}; - -static void kr_srand0(krint64_t seed, krand_t *kr) -{ - kr->mt[0] = seed; - for (kr->mti = 1; kr->mti < KR_NN; ++kr->mti) - kr->mt[kr->mti] = 6364136223846793005ULL * (kr->mt[kr->mti - 1] ^ (kr->mt[kr->mti - 1] >> 62)) + kr->mti; -} - -krand_t *kr_srand(krint64_t seed) -{ - krand_t *kr; - kr = malloc(sizeof(krand_t)); - kr_srand0(seed, kr); - return kr; -} - -krint64_t kr_rand(krand_t *kr) -{ - krint64_t x; - static const krint64_t mag01[2] = { 0, 0xB5026F5AA96619E9ULL }; - if (kr->mti >= KR_NN) { - int i; - if (kr->mti == KR_NN + 1) kr_srand0(5489ULL, kr); - for (i = 0; i < KR_NN - KR_MM; ++i) { - x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM); - kr->mt[i] = kr->mt[i + KR_MM] ^ (x>>1) ^ mag01[(int)(x&1)]; - } - for (; i < KR_NN - 1; ++i) { - x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM); - kr->mt[i] = kr->mt[i + (KR_MM - KR_NN)] ^ (x>>1) ^ mag01[(int)(x&1)]; - } - x = (kr->mt[KR_NN - 1] & KR_UM) | (kr->mt[0] & KR_LM); - kr->mt[KR_NN - 1] = kr->mt[KR_MM - 1] ^ (x>>1) ^ mag01[(int)(x&1)]; - kr->mti = 0; - } - x = kr->mt[kr->mti++]; - x ^= (x >> 29) & 0x5555555555555555ULL; - x ^= (x << 17) & 0x71D67FFFEDA60000ULL; - x ^= (x << 37) & 0xFFF7EEE000000000ULL; - x ^= (x >> 43); - return x; -} - -#ifdef _KR_MAIN -int main(int argc, char *argv[]) -{ - long i, N = 200000000; - krand_t *kr; - if (argc > 1) N = atol(argv[1]); - kr = kr_srand(11); - for (i = 0; i < N; ++i) kr_rand(kr); -// for (i = 0; i < N; ++i) lrand48(); - free(kr); - return 0; -} -#endif diff --git a/krand.h b/krand.h deleted file mode 100644 index 968331c9..00000000 --- a/krand.h +++ /dev/null @@ -1,25 +0,0 @@ -#ifndef AC_KRAND_H -#define AC_KRAND_H - -#include - -typedef uint64_t krint64_t; - -struct _krand_t; -typedef struct _krand_t krand_t; - -#define kr_drand(_kr) ((kr_rand(_kr) >> 11) * (1.0/9007199254740992.0)) -#define kr_sample(_kr, _k, _cnt) ((*(_cnt))++ < (_k)? *(_cnt) - 1 : kr_rand(_kr) % *(_cnt)) - -#ifdef __cplusplus -extern "C" { -#endif - -krand_t *kr_srand(krint64_t seed); -krint64_t kr_rand(krand_t *kr); - -#ifdef __cplusplus -} -#endif - -#endif