From d35fbeeaf5e2f139c38f1a2d4cd7df6846ff2ca9 Mon Sep 17 00:00:00 2001 From: Heng Li <lh3@me.com> Date: Tue, 17 Jul 2012 11:23:36 -0400 Subject: [PATCH] merge kmin.*, kfunc.c and krand.* to kmath.* I do not like too many files... --- kmath.c | 431 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ kmath.h | 53 +++++++ 2 files changed, 484 insertions(+) create mode 100644 kmath.c create mode 100644 kmath.h diff --git a/kmath.c b/kmath.c new file mode 100644 index 00000000..b6fbf60f --- /dev/null +++ b/kmath.c @@ -0,0 +1,431 @@ +#include <stdlib.h> +#include <string.h> +#include <math.h> +#include "kmath.h" + +/************************************** + *** Pseudo-random number generator *** + **************************************/ + +/* + 64-bit Mersenne Twister pseudorandom number generator. Adapted from: + + http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c + + which was written by Takuji Nishimura and Makoto Matsumoto and released + under the 3-clause BSD license. +*/ + +#define KR_NN 312 +#define KR_MM 156 +#define KR_UM 0xFFFFFFFF80000000ULL /* Most significant 33 bits */ +#define KR_LM 0x7FFFFFFFULL /* Least significant 31 bits */ + +struct _krand_t { + int mti; + krint64_t mt[KR_NN]; +}; + +static void kr_srand0(krint64_t seed, krand_t *kr) +{ + kr->mt[0] = seed; + for (kr->mti = 1; kr->mti < KR_NN; ++kr->mti) + kr->mt[kr->mti] = 6364136223846793005ULL * (kr->mt[kr->mti - 1] ^ (kr->mt[kr->mti - 1] >> 62)) + kr->mti; +} + +krand_t *kr_srand(krint64_t seed) +{ + krand_t *kr; + kr = malloc(sizeof(krand_t)); + kr_srand0(seed, kr); + return kr; +} + +krint64_t kr_rand(krand_t *kr) +{ + krint64_t x; + static const krint64_t mag01[2] = { 0, 0xB5026F5AA96619E9ULL }; + if (kr->mti >= KR_NN) { + int i; + if (kr->mti == KR_NN + 1) kr_srand0(5489ULL, kr); + for (i = 0; i < KR_NN - KR_MM; ++i) { + x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM); + kr->mt[i] = kr->mt[i + KR_MM] ^ (x>>1) ^ mag01[(int)(x&1)]; + } + for (; i < KR_NN - 1; ++i) { + x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM); + kr->mt[i] = kr->mt[i + (KR_MM - KR_NN)] ^ (x>>1) ^ mag01[(int)(x&1)]; + } + x = (kr->mt[KR_NN - 1] & KR_UM) | (kr->mt[0] & KR_LM); + kr->mt[KR_NN - 1] = kr->mt[KR_MM - 1] ^ (x>>1) ^ mag01[(int)(x&1)]; + kr->mti = 0; + } + x = kr->mt[kr->mti++]; + x ^= (x >> 29) & 0x5555555555555555ULL; + x ^= (x << 17) & 0x71D67FFFEDA60000ULL; + x ^= (x << 37) & 0xFFF7EEE000000000ULL; + x ^= (x >> 43); + return x; +} + +#ifdef _KR_MAIN +int main(int argc, char *argv[]) +{ + long i, N = 200000000; + krand_t *kr; + if (argc > 1) N = atol(argv[1]); + kr = kr_srand(11); + for (i = 0; i < N; ++i) kr_rand(kr); +// for (i = 0; i < N; ++i) lrand48(); + free(kr); + return 0; +} +#endif + +/****************************** + *** Non-linear programming *** + ******************************/ + +/* Hooke-Jeeves algorithm for nonlinear minimization + + Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and + the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the + papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM + 6(6):313-314). The original algorithm was designed by Hooke and + Jeeves (ACM 8:212-229). This program is further revised according to + Johnson's implementation at Netlib (opt/hooke.c). + + Hooke-Jeeves algorithm is very simple and it works quite well on a + few examples. However, it might fail to converge due to its heuristic + nature. A possible improvement, as is suggested by Johnson, may be to + choose a small r at the beginning to quickly approach to the minimum + and a large r at later step to hit the minimum. + */ + +static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls) +{ + int k, j = *n_calls; + double ftmp; + for (k = 0; k != n; ++k) { + x1[k] += dx[k]; + ftmp = func(n, x1, data); ++j; + if (ftmp < fx1) fx1 = ftmp; + else { /* search the opposite direction */ + dx[k] = 0.0 - dx[k]; + x1[k] += dx[k] + dx[k]; + ftmp = func(n, x1, data); ++j; + if (ftmp < fx1) fx1 = ftmp; + else x1[k] -= dx[k]; /* back to the original x[k] */ + } + } + *n_calls = j; + return fx1; /* here: fx1=f(n,x1) */ +} + +double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls) +{ + double fx, fx1, *x1, *dx, radius; + int k, n_calls = 0; + x1 = (double*)calloc(n, sizeof(double)); + dx = (double*)calloc(n, sizeof(double)); + for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */ + dx[k] = fabs(x[k]) * r; + if (dx[k] == 0) dx[k] = r; + } + radius = r; + fx1 = fx = func(n, x, data); ++n_calls; + for (;;) { + memcpy(x1, x, n * sizeof(double)); /* x1 = x */ + fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls); + while (fx1 < fx) { + for (k = 0; k != n; ++k) { + double t = x[k]; + dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]); + x[k] = x1[k]; + x1[k] = x1[k] + x1[k] - t; + } + fx = fx1; + if (n_calls >= max_calls) break; + fx1 = func(n, x1, data); ++n_calls; + fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls); + if (fx1 >= fx) break; + for (k = 0; k != n; ++k) + if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break; + if (k == n) break; + } + if (radius >= eps) { + if (n_calls >= max_calls) break; + radius *= r; + for (k = 0; k != n; ++k) dx[k] *= r; + } else break; /* converge */ + } + free(x1); free(dx); + return fx1; +} + +// I copied this function somewhere several years ago with some of my modifications, but I forgot the source. +double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin) +{ + double bound, u, r, q, fu, tmp, fa, fb, fc, c; + const double gold1 = 1.6180339887; + const double gold2 = 0.3819660113; + const double tiny = 1e-20; + const int max_iter = 100; + + double e, d, w, v, mid, tol1, tol2, p, eold, fv, fw; + int iter; + + fa = func(a, data); fb = func(b, data); + if (fb > fa) { // swap, such that f(a) > f(b) + tmp = a; a = b; b = tmp; + tmp = fa; fa = fb; fb = tmp; + } + c = b + gold1 * (b - a), fc = func(c, data); // golden section extrapolation + while (fb > fc) { + bound = b + 100.0 * (c - b); // the farthest point where we want to go + r = (b - a) * (fb - fc); + q = (b - c) * (fb - fa); + if (fabs(q - r) < tiny) { // avoid 0 denominator + tmp = q > r? tiny : 0.0 - tiny; + } else tmp = q - r; + u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp); // u is the parabolic extrapolation point + if ((b > u && u > c) || (b < u && u < c)) { // u lies between b and c + fu = func(u, data); + if (fu < fc) { // (b,u,c) bracket the minimum + a = b; b = u; fa = fb; fb = fu; + break; + } else if (fu > fb) { // (a,b,u) bracket the minimum + c = u; fc = fu; + break; + } + u = c + gold1 * (c - b); fu = func(u, data); // golden section extrapolation + } else if ((c > u && u > bound) || (c < u && u < bound)) { // u lies between c and bound + fu = func(u, data); + if (fu < fc) { // fb > fc > fu + b = c; c = u; u = c + gold1 * (c - b); + fb = fc; fc = fu; fu = func(u, data); + } else { // (b,c,u) bracket the minimum + a = b; b = c; c = u; + fa = fb; fb = fc; fc = fu; + break; + } + } else if ((u > bound && bound > c) || (u < bound && bound < c)) { // u goes beyond the bound + u = bound; fu = func(u, data); + } else { // u goes the other way around, use golden section extrapolation + u = c + gold1 * (c - b); fu = func(u, data); + } + a = b; b = c; c = u; + fa = fb; fb = fc; fc = fu; + } + if (a > c) u = a, a = c, c = u; // swap + + // now, a<b<c, fa>fb and fb<fc, move on to Brent's algorithm + e = d = 0.0; + w = v = b; fv = fw = fb; + for (iter = 0; iter != max_iter; ++iter) { + mid = 0.5 * (a + c); + tol2 = 2.0 * (tol1 = tol * fabs(b) + tiny); + if (fabs(b - mid) <= (tol2 - 0.5 * (c - a))) { + *xmin = b; return fb; // found + } + if (fabs(e) > tol1) { + // related to parabolic interpolation + r = (b - w) * (fb - fv); + q = (b - v) * (fb - fw); + p = (b - v) * q - (b - w) * r; + q = 2.0 * (q - r); + if (q > 0.0) p = 0.0 - p; + else q = 0.0 - q; + eold = e; e = d; + if (fabs(p) >= fabs(0.5 * q * eold) || p <= q * (a - b) || p >= q * (c - b)) { + d = gold2 * (e = (b >= mid ? a - b : c - b)); + } else { + d = p / q; u = b + d; // actual parabolic interpolation happens here + if (u - a < tol2 || c - u < tol2) + d = (mid > b)? tol1 : 0.0 - tol1; + } + } else d = gold2 * (e = (b >= mid ? a - b : c - b)); // golden section interpolation + u = fabs(d) >= tol1 ? b + d : b + (d > 0.0? tol1 : -tol1); + fu = func(u, data); + if (fu <= fb) { // u is the minimum point so far + if (u >= b) a = b; + else c = b; + v = w; w = b; b = u; fv = fw; fw = fb; fb = fu; + } else { // adjust (a,c) and (u,v,w) + if (u < b) a = u; + else c = u; + if (fu <= fw || w == b) { + v = w; w = u; + fv = fw; fw = fu; + } else if (fu <= fv || v == b || v == w) { + v = u; fv = fu; + } + } + } + *xmin = b; + return fb; +} + +/************************* + *** Special functions *** + *************************/ + +/* Log gamma function + * \log{\Gamma(z)} + * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245 + */ +double kf_lgamma(double z) +{ + double x = 0; + x += 0.1659470187408462e-06 / (z+7); + x += 0.9934937113930748e-05 / (z+6); + x -= 0.1385710331296526 / (z+5); + x += 12.50734324009056 / (z+4); + x -= 176.6150291498386 / (z+3); + x += 771.3234287757674 / (z+2); + x -= 1259.139216722289 / (z+1); + x += 676.5203681218835 / z; + x += 0.9999999999995183; + return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5); +} + +/* complementary error function + * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt + * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66 + */ +double kf_erfc(double x) +{ + const double p0 = 220.2068679123761; + const double p1 = 221.2135961699311; + const double p2 = 112.0792914978709; + const double p3 = 33.912866078383; + const double p4 = 6.37396220353165; + const double p5 = .7003830644436881; + const double p6 = .03526249659989109; + const double q0 = 440.4137358247522; + const double q1 = 793.8265125199484; + const double q2 = 637.3336333788311; + const double q3 = 296.5642487796737; + const double q4 = 86.78073220294608; + const double q5 = 16.06417757920695; + const double q6 = 1.755667163182642; + const double q7 = .08838834764831844; + double expntl, z, p; + z = fabs(x) * M_SQRT2; + if (z > 37.) return x > 0.? 0. : 2.; + expntl = exp(z * z * - .5); + if (z < 10. / M_SQRT2) // for small z + p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0) + / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0); + else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65))))); + return x > 0.? 2. * p : 2. * (1. - p); +} + +/* The following computes regularized incomplete gamma functions. + * Formulas are taken from Wiki, with additional input from Numerical + * Recipes in C (for modified Lentz's algorithm) and AS245 + * (http://lib.stat.cmu.edu/apstat/245). + * + * A good online calculator is available at: + * + * http://www.danielsoper.com/statcalc/calc23.aspx + * + * It calculates upper incomplete gamma function, which equals + * kf_gammaq(s,z)*tgamma(s). + */ + +#define KF_GAMMA_EPS 1e-14 +#define KF_TINY 1e-290 + +// regularized lower incomplete gamma function, by series expansion +static double _kf_gammap(double s, double z) +{ + double sum, x; + int k; + for (k = 1, sum = x = 1.; k < 100; ++k) { + sum += (x *= z / (s + k)); + if (x / sum < KF_GAMMA_EPS) break; + } + return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum)); +} +// regularized upper incomplete gamma function, by continued fraction +static double _kf_gammaq(double s, double z) +{ + int j; + double C, D, f; + f = 1. + z - s; C = f; D = 0.; + // Modified Lentz's algorithm for computing continued fraction + // See Numerical Recipes in C, 2nd edition, section 5.2 + for (j = 1; j < 100; ++j) { + double a = j * (s - j), b = (j<<1) + 1 + z - s, d; + D = b + a * D; + if (D < KF_TINY) D = KF_TINY; + C = b + a / C; + if (C < KF_TINY) C = KF_TINY; + D = 1. / D; + d = C * D; + f *= d; + if (fabs(d - 1.) < KF_GAMMA_EPS) break; + } + return exp(s * log(z) - z - kf_lgamma(s) - log(f)); +} + +double kf_gammap(double s, double z) +{ + return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z); +} + +double kf_gammaq(double s, double z) +{ + return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z); +} + +/* Regularized incomplete beta function. The method is taken from + * Numerical Recipe in C, 2nd edition, section 6.4. The following web + * page calculates the incomplete beta function, which equals + * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b): + * + * http://www.danielsoper.com/statcalc/calc36.aspx + */ +static double kf_betai_aux(double a, double b, double x) +{ + double C, D, f; + int j; + if (x == 0.) return 0.; + if (x == 1.) return 1.; + f = 1.; C = f; D = 0.; + // Modified Lentz's algorithm for computing continued fraction + for (j = 1; j < 200; ++j) { + double aa, d; + int m = j>>1; + aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1)) + : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m)); + D = 1. + aa * D; + if (D < KF_TINY) D = KF_TINY; + C = 1. + aa / C; + if (C < KF_TINY) C = KF_TINY; + D = 1. / D; + d = C * D; + f *= d; + if (fabs(d - 1.) < KF_GAMMA_EPS) break; + } + return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f; +} +double kf_betai(double a, double b, double x) +{ + return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x); +} + +#ifdef KF_MAIN +#include <stdio.h> +int main(int argc, char *argv[]) +{ + double x = 5.5, y = 3; + double a, b; + printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x)); + printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y)); + a = 2; b = 2; x = 0.5; + printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b))); + return 0; +} +#endif diff --git a/kmath.h b/kmath.h new file mode 100644 index 00000000..2c3e7796 --- /dev/null +++ b/kmath.h @@ -0,0 +1,53 @@ +#ifndef AC_KMATH_H +#define AC_KMATH_H + +#include <stdint.h> + +#ifdef __cplusplus +extern "C" { +#endif + + /********************************** + * Pseudo-random number generator * + **********************************/ + + typedef uint64_t krint64_t; + + struct _krand_t; + typedef struct _krand_t krand_t; + + #define kr_drand(_kr) ((kr_rand(_kr) >> 11) * (1.0/9007199254740992.0)) + #define kr_sample(_kr, _k, _cnt) ((*(_cnt))++ < (_k)? *(_cnt) - 1 : kr_rand(_kr) % *(_cnt)) + + krand_t *kr_srand(krint64_t seed); + krint64_t kr_rand(krand_t *kr); + + /************************** + * Non-linear programming * + **************************/ + + #define KMIN_RADIUS 0.5 + #define KMIN_EPS 1e-7 + #define KMIN_MAXCALL 50000 + + typedef double (*kmin_f)(int, double*, void*); + typedef double (*kmin1_f)(double, void*); + + double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls); // Hooke-Jeeves' + double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin); // Brent's 1-dimenssion + + /********************* + * Special functions * + *********************/ + + double kf_lgamma(double z); // log gamma function + double kf_erfc(double x); // complementary error function + double kf_gammap(double s, double z); // regularized lower incomplete gamma function + double kf_gammaq(double s, double z); // regularized upper incomplete gamma function + double kf_betai(double a, double b, double x); // regularized incomplete beta function + +#ifdef __cplusplus +} +#endif + +#endif