-
Notifications
You must be signed in to change notification settings - Fork 87
/
yolov5s.py
120 lines (105 loc) · 5.34 KB
/
yolov5s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import sys
sys.path.append("../yolov5_in_tf2_keras")
import tensorflow as tf
from layers import Conv, C3, SPPF, Concat
class Yolov5s:
def __init__(self, image_shape, batch_size, num_class, anchors_per_location):
self.image_shape = image_shape
self.batch_size = batch_size
self.num_class = num_class
self.anchors_per_location = anchors_per_location
def build_graph(self):
"""
:param inputs:
:return: p7: [batch, h/8, w/8, anchors, num_class+5]
p8: [batch, h/16, w/16, anchors, num_class+5]
p9: [batch, h/32, w/32, anchors, num_class+5]
"""
inputs = tf.keras.Input(shape=self.image_shape, batch_size=self.batch_size)
# backbone
x = Conv(out_channels=32, kernel_size=6, stride=2, padding='same')(inputs)
# 1/4
x = Conv(out_channels=64, kernel_size=3, stride=2, padding='same')(x)
x = C3(out_channels=64, num_bottles=1)(x)
# 1/8
p3 = x = Conv(out_channels=128, kernel_size=3, stride=2, padding='same')(x)
x = C3(out_channels=128, num_bottles=2)(x)
# 1/16
p4 = x = Conv(out_channels=256, kernel_size=3, stride=2, padding='same')(x)
x = C3(out_channels=256, num_bottles=3)(x)
# 1/32
x = Conv(out_channels=512, kernel_size=3, stride=2, padding='same')(x)
x = C3(out_channels=512, num_bottles=1)(x)
x = SPPF(in_channels=512, out_channels=512, kernel_size=5)(x)
# head
p5 = x = Conv(out_channels=256, kernel_size=1, stride=1)(x)
# 1/16
x = tf.keras.layers.UpSampling2D(size=(2, 2), interpolation='nearest')(x)
x = Concat(dimension=3)([x, p4])
x = C3(out_channels=256, num_bottles=1, shortcut=False)(x)
p6 = x = Conv(out_channels=128, kernel_size=1, stride=1, padding='same')(x)
# 1/8
x = tf.keras.layers.UpSampling2D(size=(2, 2), interpolation='nearest')(x)
x = Concat(dimension=3)([x, p3])
p7 = x = C3(out_channels=128, num_bottles=3, shortcut=False)(x)
# 1/16
x = Conv(out_channels=128, kernel_size=3, stride=2, padding='same')(x)
x = Concat(dimension=3)([x, p6])
p8 = x = C3(out_channels=256, num_bottles=1, shortcut=False)(x)
# 1/32
x = Conv(out_channels=256, kernel_size=3, stride=2, padding='same')(x)
x = Concat(dimension=3)([x, p5])
p9 = C3(out_channels=512, num_bottles=1, shortcut=False)(x)
# output tensor [batch, grid, grid, anchors, 5 + num_classes]
# output tensor [batch, grid, grid, anchors, 5 + num_classes]
p7 = tf.keras.layers.Conv2D((self.num_class + 5) * self.anchors_per_location, kernel_size=1)(p7)
# p7_shape = tf.shape(p7)
# p7 = tf.reshape(p7, [self.batch_size, p7_shape[1], p7_shape[2], self.anchors_per_location, self.num_class + 5])
p7 = tf.keras.layers.Reshape([self.image_shape[0]//8, self.image_shape[1]//8, self.anchors_per_location, self.num_class + 5])(p7)
# [batch, grid, grid, anchors, 5 + num_classes]
p8 = tf.keras.layers.Conv2D((self.num_class + 5) * self.anchors_per_location, kernel_size=1)(p8)
# p8_shape = tf.shape(p8)
# p8 = tf.reshape(p8, [self.batch_size, p8_shape[1], p8_shape[2], self.anchors_per_location, self.num_class + 5])
p8 = tf.keras.layers.Reshape([self.image_shape[0]//16, self.image_shape[1]//16, self.anchors_per_location, self.num_class + 5])(p8)
# [batch, grid, grid, anchors, 5 + num_classes]
p9 = tf.keras.layers.Conv2D((self.num_class + 5) * self.anchors_per_location, kernel_size=1)(p9)
# p9_shape = tf.shape(p9)
# p9 = tf.reshape(p9, [self.batch_size, p9_shape[1], p9_shape[2], self.anchors_per_location, self.num_class + 5])
p9 = tf.keras.layers.Reshape([self.image_shape[0]//32, self.image_shape[1]//32, self.anchors_per_location, self.num_class + 5])(p9)
model = tf.keras.models.Model(inputs=inputs, outputs=[p7, p8, p9])
return model
def gen_data():
while True:
image = tf.random.normal([2, 512, 512, 3])
p7 = tf.random.normal([2, 512 // 8, 512 // 8, 256])
p8 = tf.random.normal([2, 512 // 16, 512 // 16, 512])
p9 = tf.random.normal([2, 512 // 32, 512 // 32, 1024])
yield image, [p7, p8, p9]
if __name__ == "__main__":
# for i,o in ds_series:
# print(tf.shape(i))
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# from tensorflow.python.ops import summary_ops_v2
# from tensorflow.python.keras.backend import get_graph
yolo5s = Yolov5s(image_shape=(416, 416, 3),
batch_size=2,
num_class=30,
anchors_per_location=3)
model = yolo5s.build_graph()
model.summary(line_length=200)
# model.compile(
# optimizer='adam',
# loss='mse',
# metrics=['accuracy'])
# tb_writer = tf.summary.create_file_writer('./logs')
# tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='./logs')
# model.fit_generator(iter(gen_data()), steps_per_epoch=10, epochs=1, callbacks=[tensorboard_callback])
# tf.summary.trace_on(graph=True, profiler=True)
# Call only one tf.function when tracing.
# z = my_func(x, y)
# with tb_writer.as_default():
# tf.summary.trace_export(
# name="my_func_trace",
# step=0,
# profiler_outdir='./logs')