forked from millanek/Dsuite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dsuite_fBranch.cpp
273 lines (254 loc) · 13.8 KB
/
Dsuite_fBranch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
//
// Dsuite_fBranch.cpp
// DsuiteXcode
//
// Created by Milan Malinsky on 11/11/2019.
//
#include "Dsuite_fBranch.h"
#define SUBPROGRAM "Fbranch"
#define DEBUG 0
static const char *BRANCHSCORE_USAGE_MESSAGE =
"Usage: " PROGRAM_BIN " " SUBPROGRAM " [OPTIONS] TREE_FILE.nwk FVALS_tree.txt\n"
"Implements the 'f-branch' type calculations developed by Hannes Svardal for Malinsky et al., 2018, Nat. Ecol. Evo.\n"
"Uses the f4-ratio (f_G) values produced by Dsuite Dtrios (or DtriosCombine) with the --tree option; this is the output of Dtrios with the \"_tree.txt\" suffix\n"
"To use Fbranch, the tree in TREE_FILE.nwk must be rooted with the Outgroup.\n"
"Output to stdout\n"
"\n"
" -p, --pthresh (default=0.01) fb scores whose associated p-value is less than \n"
" -Z, --Zb-matrix (optional) output the equivalent of fb-statistic, but with Z-scores to assess statistical significance\n"
" this will be printed below the f-branch matrix\n"
" -P, --Pb-matrix (optional) output the equivalent of fb-statistic, but with p-values to assess statistical significance\n"
" this will be printed below the f-branch matrix\n"
" -h, --help display this help and exit\n"
"\n"
"\nReport bugs to " PACKAGE_BUGREPORT "\n\n";
//enum { OPT_F_JK };
static const char* shortopts = "hp:Z";
//static const int JK_WINDOW = 5000;
static const struct option longopts[] = {
{ "Zb-matrix", no_argument, NULL, 'Z' },
{ "Pb-matrix", no_argument, NULL, 'P' },
{ "pthresh", required_argument, NULL, 'p' },
{ "help", no_argument, NULL, 'h' },
{ NULL, 0, NULL, 0 }
};
namespace opt
{
static string treeFile;
static string DvalsFile;
static bool printZb = false;
static bool printPb = false;
static double pthresh = 0.01;
}
int fBranchMain(int argc, char** argv) {
parseFbranchOptions(argc, argv);
std::istream* treeFile = new std::ifstream(opt::treeFile.c_str());
if (!treeFile->good()) { std::cerr << "The file " << opt::treeFile << " could not be opened. Exiting..." << std::endl; exit(EXIT_FAILURE);}
std::istream* DvalsFile = new std::ifstream(opt::DvalsFile.c_str());
if (!DvalsFile->good()) { std::cerr << "The file " << opt::DvalsFile << " could not be opened. Exiting..." << std::endl; exit(EXIT_FAILURE);}
if (opt::DvalsFile.substr(opt::DvalsFile.size()-9) != "_tree.txt") { std::cerr << "The name of the input file with the f4-ratio values should end in \"_tree.txt\".\nPlease make sure you run Dtrios with the --tree option and then feed the correct file into Fbranch. Exiting..." << std::endl; exit(EXIT_FAILURE); }
std::map<string,std::vector<std::vector<string>>> acToBmap;
string line; int l = 0;
getline(*DvalsFile, line); // get the header
std::vector<string> headerVec = split(line, '\t');
int indexFg = -1; int indexZ = -1;
if (headerVec[4] == "Z-score") { indexZ = 4; }
if (headerVec[5] == F4HEADER || headerVec[5] == "f_G") { indexFg = 5; } else if (headerVec[6] == F4HEADER || headerVec[6] == "f_G") { indexFg = 6; }
while (getline(*DvalsFile, line)) {
line.erase(std::remove(line.begin(), line.end(), '\r'), line.end()); // Deal with any left over \r from files prepared on Windows
l++; if (line == "") { std::cerr << "Please fix the format of the " << opt::DvalsFile << " file.\nLine " << l << " is empty. Exiting..." << std::endl; exit(EXIT_FAILURE); }
std::vector<string> speciesAndVals = split(line, '\t');
if (speciesAndVals.size() < 6 || indexFg == -1) {
std::cerr << "Please fix the format of the " << opt::DvalsFile << " file." << std::endl;
std::cerr << "Looks like the file does not contain f4-ratio statistics. Exiting..." << std::endl;
exit(EXIT_FAILURE);
}
double f4ratio = stringToDouble(speciesAndVals[indexFg]); double Zscore = stringToDouble(speciesAndVals[indexZ]);
double pval = 2 * (1 - normalCDF(Zscore));
std::vector<string> bAndValLine; bAndValLine.push_back(speciesAndVals[1]);
if (pval < opt::pthresh) bAndValLine.push_back(speciesAndVals[indexFg]); else bAndValLine.push_back("0"); // Set non-significant f4-ratio statistics to 0
if (indexZ != -1) bAndValLine.push_back(speciesAndVals[indexZ]);
std::vector<string> aAndValLine; aAndValLine.push_back(speciesAndVals[0]); aAndValLine.push_back("0");
if (indexZ != -1) aAndValLine.push_back("0");
acToBmap[speciesAndVals[0]+","+speciesAndVals[2]].push_back(bAndValLine);
acToBmap[speciesAndVals[1]+","+speciesAndVals[2]].push_back(aAndValLine);
}
string treeString; getline(*treeFile, treeString);
Tree* testTree = new Tree(treeString);
testTree->updateProgenyIds();
testTree->fillSisterBranches();
for (std::vector<Branch*>::iterator b = testTree->branches.begin(); b != testTree->branches.end(); b++) {
if ((*b)->parentId != "treeOrigin") {
std::vector<string> Bs = (*b)->progenyIds;
std::vector<string> As = (*b)->sisterBranch->progenyIds;
//if((*b)->id == "b5") { print_vector(Bs, std::cout); }
std::vector<double> Bmins; std::vector<double> vals;
std::vector<double> ZBmins; std::vector<double> Zvals;
for (std::vector<string>::iterator C = testTree->allSpecies.begin(); C != testTree->allSpecies.end(); C++) {
for (std::vector<string>::iterator A = As.begin(); A != As.end(); A++) {
std::vector<std::vector<string>> bAndVal; std::vector<std::vector<string>> aAndVal;
try { bAndVal = acToBmap.at(*A+","+*C); } catch (const std::out_of_range& oor) {}
for (int i = 0; i < bAndVal.size(); i++) {
if (std::count(Bs.begin(), Bs.end(), bAndVal[i][0])) {
vals.push_back(stringToDouble(bAndVal[i][1]));
if (indexZ != -1) {
Zvals.push_back(stringToDouble(bAndVal[i][2]));
// std::cerr << "bAndVal[i]: "; print_vector(bAndVal[i],std::cerr);
}
}
//if((*b)->id == "b5") { std::cout << *A << "\t" << bAndVal[i][0] << "\t" << bAndVal[i][1] << "\tbAndVal.size():\t" << bAndVal.size() << "\ti:\t" << i << std::endl;
//
//}
}
if (!vals.empty()) { Bmins.push_back(*std::min_element(vals.begin(),vals.end())); vals.clear(); }
if (!Zvals.empty()) { ZBmins.push_back(*std::min_element(Zvals.begin(),Zvals.end())); Zvals.clear(); }
//
}
double fbC = NAN; double ZfbC = NAN;
if (!Bmins.empty()) { fbC = median(Bmins.begin(),Bmins.end()); Bmins.clear(); }
if (!ZBmins.empty()) { ZfbC = median(ZBmins.begin(),ZBmins.end()); ZBmins.clear(); }
/* else { // There is no positive value; just find if any value is possible for this ABC combination
bool ACpossible = false;
for (std::vector<string>::iterator B = Bs.begin(); B != Bs.end(); B++) {
std::vector<std::vector<string>> bAndVal; std::vector<std::vector<string>> aAndVal;
try { bAndVal = acToBmap.at(*B+","+*C); } catch (const std::out_of_range& oor) {}
for (int i = 0; i < bAndVal.size(); i++) {
if (std::count(As.begin(), As.end(), bAndVal[i][0])) {
ACpossible = true; break;
}
}
}
if (ACpossible) fbC = 0;
} */
(*b)->fbCvals.push_back(fbC);
(*b)->ZfbCvals.push_back(ZfbC);
(*b)->PfbCvals.push_back(2 * (1 - normalCDF(ZfbC)));
// std::cerr << "Here: (*b)->progenyIds: "; print_vector((*b)->progenyIds,std::cerr);
// std::cerr << "Here: (*b)->ZfbCvals.size() " << (*b)->ZfbCvals.size() << std::endl;
// std::cerr << "Here: (*b)->ZfbCvals: "; print_vector((*b)->ZfbCvals,std::cerr);
}
}
}
// Generate output
std::cout << "branch\tbranch_descendants\t"; print_vector(testTree->allSpecies, std::cout);
for (std::vector<Branch*>::iterator b = testTree->branches.begin(); b != testTree->branches.end(); b++) {
if ((*b)->parentId != "treeOrigin") {
std::cout << (*b)->id << "\t"; print_vector((*b)->progenyIds, std::cout, ',', false);
std::cout << "\t"; print_vector((*b)->fbCvals, std::cout);
//std::cout << "Sister branch:\t" << (*b)->sisterBranch->id << std::endl;
//std::cout << "This branch progeny:\t"; print_vector((*b)->progenyIds, std::cout);
//std::cout << "Sister branch progeny:\t"; print_vector((*b)->sisterBranch->progenyIds, std::cout);
//std::cout << "fbCs:\t"; print_vector((*b)->fbCvals, std::cout);
//std::cout << std::endl;
}
}
if (indexZ != -1 && opt::printZb) {
std::cout << "\n";
std::cout << "# Z-scores:\n";
std::cout << "branch\tbranch_descendants\t"; print_vector(testTree->allSpecies, std::cout);
for (std::vector<Branch*>::iterator b = testTree->branches.begin(); b != testTree->branches.end(); b++) {
if ((*b)->parentId != "treeOrigin") {
std::cout << (*b)->id << "\t"; print_vector((*b)->progenyIds, std::cout, ',', false);
std::cout << "\t"; print_vector((*b)->ZfbCvals, std::cout);
}
}
}
if (indexZ != -1 && opt::printPb) {
std::cout << "\n";
std::cout << "# p-values:\n";
std::cout << "branch\tbranch_descendants\t"; print_vector(testTree->allSpecies, std::cout);
for (std::vector<Branch*>::iterator b = testTree->branches.begin(); b != testTree->branches.end(); b++) {
if ((*b)->parentId != "treeOrigin") {
std::cout << (*b)->id << "\t"; print_vector((*b)->progenyIds, std::cout, ',', false);
std::cout << "\t"; print_vector((*b)->PfbCvals, std::cout);
}
}
}
return 0;
}
void parseFbranchOptions(int argc, char** argv) {
bool die = false;
std::vector<string> windowSizeStep;
for (char c; (c = getopt_long(argc, argv, shortopts, longopts, NULL)) != -1;)
{
std::istringstream arg(optarg != NULL ? optarg : "");
switch (c)
{
case '?': die = true; break;
case 'p': arg >> opt::pthresh; break;
case 'Z': opt::printZb = true; break;
case 'P': opt::printPb = true; break;
case 'h':
std::cout << BRANCHSCORE_USAGE_MESSAGE;
exit(EXIT_SUCCESS);
}
}
if (argc - optind < 2) {
std::cerr << "missing arguments\n";
die = true;
}
else if (argc - optind > 2)
{
std::cerr << "too many arguments\n";
die = true;
}
if (die) {
std::cout << "\n" << BRANCHSCORE_USAGE_MESSAGE;
exit(EXIT_FAILURE);
}
// Parse the input filenames
opt::treeFile = argv[optind++];
opt::DvalsFile = argv[optind++];
}
void Tree::updateProgenyIds() {
// Determine the progeny of each branch (needed to know whether conditions are met, and for fossil constraints).
// First of all, set progeniesComplete to 2 for all extinct and present branches.
for (std::vector<Branch*>::iterator b = branches.begin(); b != branches.end(); b++) {
if ((*b)->daughterId1 == "none") {
(*b)->progeniesComplete = 2;
(*b)->progenyIds.push_back((*b)->terminalSpeciesId);
}
// Set progenyPassedOn to true for the two root branches.
if ((*b)->parentId == "treeOrigin") (*b)->progenyPassedOn = true;
}
bool allProgeniesComplete = false;
while(!allProgeniesComplete) {
std::vector<Branch*> newlyCompleted;
for (std::vector<Branch*>::iterator b = branches.begin(); b != branches.end(); b++) {
// Determine if the progeny of this branch is clear but has not been passed on to the parent yet.
if ((*b)->progeniesComplete == 2 && (*b)->progenyPassedOn == false) {
newlyCompleted.push_back(*b);
}
}
if (newlyCompleted.size() == 0) allProgeniesComplete = true;
for (std::vector<Branch*>::iterator b = newlyCompleted.begin(); b != newlyCompleted.end(); b++) {
// Find parent, pass progeny+self on to parents progeny, add parent.progeniesComplete += 1, and change own progenyPassedOn to true.
for (std::vector<Branch*>::iterator bb = branches.begin(); bb != branches.end(); bb++) {
if ((*bb)->id == (*b)->parentId) {
(*b)->parentBranch = *bb;
(*bb)->progenyIds.insert((*bb)->progenyIds.end(), (*b)->progenyIds.begin(), (*b)->progenyIds.end() );
(*bb)->progeniesComplete++;
(*b)->progenyPassedOn = true;
break;
}
}
}
}
}
void Tree::fillSisterBranches() {
for (std::vector<Branch*>::iterator b = branches.begin(); b != branches.end(); b++) {
if ((*b)->parentId != "treeOrigin") {
string sisterId;
if ((*b)->parentBranch->daughterId1 != (*b)->id)
sisterId = (*b)->parentBranch->daughterId1;
else
sisterId = (*b)->parentBranch->daughterId2;
for (std::vector<Branch*>::iterator bb = branches.begin(); bb != branches.end(); bb++) {
if ((*bb)->id == sisterId) {
(*b)->sisterBranch = *bb;
break;
}
}
}
}
}