-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathsolution.py
40 lines (34 loc) · 1.21 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# This challenge use a disjoint set with set size tracking.
# In addition to the basic disjoint set operations, we keep
# track of the total elements in a set with (#1), and add a
# method (#2) to get the set size.
#
# The find method is just plain path compression but written
# in a more verbose manner to eliminate recursion.
class DisjointSet:
def __init__(self, N):
self.parent = [i for i in range(N)]
self.total = [1] * N #1
def union(self, a, b):
a_parent = self.find(a)
b_parent = self.find(b)
if a_parent != b_parent:
self.parent[b_parent] = a_parent
self.total[a_parent] += self.total[b_parent] #1
def find(self, a):
parents = [a]
while self.parent[a] != a:
a = self.parent[a]
parents.append(a)
for x in parents[:-1]:
self.parent[x] = parents[-1]
return parents[-1]
def get_total(self, a): #2
return self.total[self.find(a)]
N = int(input())
ds = DisjointSet(2 * N)
for i in range(N):
G, B = map(int, input().split())
ds.union(G - 1, B - 1)
set_size = [ds.get_total(i) for i in range(2 * N) if ds.get_total(i) != 1]
print(min(set_size), max(set_size))