-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
145 lines (120 loc) · 5.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import print_function
import os
import argparse
from glob import glob
from PIL import Image
# import tensorflow as tf
import tensorflow.compat.v1 as tf
from model import lowlight_enhance
# from model_end2end import lowlight_enhance
from utils import *
parser = argparse.ArgumentParser(description='')
parser.add_argument('--use_gpu', dest='use_gpu', type=int, default=1, help='gpu flag, 1 for GPU and 0 for CPU')
parser.add_argument('--gpu_idx', dest='gpu_idx', default="0", help='GPU idx')
parser.add_argument('--gpu_mem', dest='gpu_mem', type=float, default=0.5, help="0 to 1, gpu memory usage")
parser.add_argument('--phase', dest='phase', default='train', help='train or test')
parser.add_argument('--epoch', dest='epoch', type=int, default=100, help='number of total epoches')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=16, help='number of samples in one batch')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=48, help='patch size')
parser.add_argument('--start_lr', dest='start_lr', type=float, default=0.001, help='initial learning rate for adam')
parser.add_argument('--eval_every_epoch', dest='eval_every_epoch', default=20, help='evaluating and saving checkpoints every # epoch')
parser.add_argument('--checkpoint_dir', dest='ckpt_dir', default='./checkpoint', help='directory for checkpoints')
parser.add_argument('--sample_dir', dest='sample_dir', default='./sample', help='directory for evaluating outputs')
parser.add_argument('--save_dir', dest='save_dir', default='./test_results', help='directory for testing outputs')
parser.add_argument('--test_dir', dest='test_dir', default='./data/test/low', help='directory for testing inputs')
parser.add_argument('--decom', dest='decom', default=0, help='decom flag, 0 for enhanced results only and 1 for decomposition results')
args = parser.parse_args()
def lowlight_train(lowlight_enhance):
if not os.path.exists(args.ckpt_dir):
os.makedirs(args.ckpt_dir)
if not os.path.exists(args.sample_dir):
os.makedirs(args.sample_dir)
lr = args.start_lr * np.ones([args.epoch])
lr[20:] = lr[0] / 10.0
lr[-10:] = lr[-1] / 10.0
train_low_data = []
train_high_data = []
train_low_data_names = glob('./data/our485/low/*.png')
train_high_data_names = glob('./data/our485/high/*.png')
train_low_data_names += glob('./data/syn/low/*.png')
train_high_data_names += glob('./data/syn/high/*.png')
train_low_data_names.sort()
train_high_data_names.sort()
assert len(train_low_data_names) == len(train_high_data_names)
print('[*] Number of training data: %d' % len(train_low_data_names))
for idx in range(len(train_low_data_names)):
low_im = load_images(train_low_data_names[idx])
train_low_data.append(low_im)
high_im = load_images(train_high_data_names[idx])
train_high_data.append(high_im)
eval_low_data = []
eval_high_data = []
eval_low_data_name = glob('./data/eval15/low/*.*')
# eval_high_data_name = glob('./data/eval15/high/*.*')
for idx in range(len(eval_low_data_name)):
eval_low_im = load_images(eval_low_data_name[idx])
eval_low_data.append(eval_low_im)
# eval_high_im = load_images(eval_high_data_name[idx])
# eval_high_data.append(eval_high_im)
lowlight_enhance.train(train_low_data, train_high_data, eval_low_data,
batch_size=args.batch_size,
patch_size=args.patch_size,
epoch=args.epoch,
lr=lr,
sample_dir=args.sample_dir,
ckpt_dir=os.path.join(args.ckpt_dir, 'Decom'),
eval_every_epoch=args.eval_every_epoch,
train_phase="Decom",
# eval_high_data=eval_high_data,
)
lowlight_enhance.train(train_low_data, train_high_data, eval_low_data,
batch_size=args.batch_size,
patch_size=args.patch_size,
epoch=args.epoch,
lr=lr,
sample_dir=args.sample_dir,
ckpt_dir=os.path.join(args.ckpt_dir, 'Relight'),
eval_every_epoch=args.eval_every_epoch,
train_phase="Relight",
# eval_high_data=eval_high_data,
)
def lowlight_test(lowlight_enhance):
if args.test_dir == None:
print("[!] please provide --test_dir")
exit(0)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
test_low_data_name = glob(os.path.join(args.test_dir) + '/*.*')
test_low_data = []
test_high_data = []
for idx in range(len(test_low_data_name)):
test_low_im = load_images(test_low_data_name[idx])
test_low_data.append(test_low_im)
lowlight_enhance.test(test_low_data, test_high_data, test_low_data_name, save_dir=args.save_dir, decom_flag=args.decom)
def main(_):
if args.use_gpu:
print("[*] GPU\n")
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_idx
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_mem)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
model = lowlight_enhance(sess)
if args.phase == 'train':
lowlight_train(model)
elif args.phase == 'test':
lowlight_test(model)
else:
print('[!] Unknown phase')
exit(0)
else:
print("[*] CPU\n")
with tf.Session() as sess:
model = lowlight_enhance(sess)
if args.phase == 'train':
lowlight_train(model)
elif args.phase == 'test':
lowlight_test(model)
else:
print('[!] Unknown phase')
exit(0)
if __name__ == '__main__':
tf.app.run()