-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCAN.py
409 lines (339 loc) · 21.4 KB
/
CAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import sys
import tensorflow as tf
import numpy as np
import re
from glob import glob
import pandas
from six.moves import xrange
from random import shuffle
class CAN(object):
def __init__(self, sess):
self.sess = sess
self.data = glob(os.path.join("./", 'wikiart',
'*.jpg'))
self.data = self.data[:50000]
self.sample_size = 32
self.batch_size = 32
self.epoch = 100
self.label_dim = 137 # wikiart class num
self.random_noise_dim = 100
self.input_size = 512
self.output_size = 512
self.sample_dir = 'samples'
# self.checkpoint_dir = 'drive/My Drive/checkpoint'
self.checkpoint_dir = 'drive/My Drive/new_checkpoint'
self.checkpint_dir_model = 'wikiart'
self.data_dir = 'data'
# self.tensorboard_dir = 'drive/My Drive/tensorboard/log'
self.tensorboard_dir = 'tensorboard/logs'
## get label(classification) data
self.csv_file_path = '/content/wikiart/all_data_info.csv'
self.df = pandas.read_csv(self.csv_file_path)
self.label_dict = self.df['style'].unique()
self.label_dict = dict(enumerate(self.label_dict))
self.label_dict = dict((v, k) for k, v in self.label_dict.items())
print(self.label_dict)
## Check required directory and make directory
if not os.path.exists(self.checkpoint_dir):
print('NO checkpoint directory => Making checkpoint directory')
print('\nMake directory in drive first')
os.makedirs(self.checkpoint_dir)
if not os.path.exists(self.sample_dir):
print('NO sample directory => Making sample directory')
os.makedirs(self.sample_dir)
if not os.path.exists(self.tensorboard_dir):
print('No tensorboard summary directory => Making directory')
os.makedirs(self.tensorboard_dir)
if not os.path.exists(self.data_dir) or not self.data:
# print(self.data)
print('\nPROCESS END')
print('WARNING: No data directory or No image data')
sys.exit(1)
def build_model(self):
## Creating a variable
self.y = tf.placeholder(tf.float32, [None, self.label_dim], name='y')
self.real_image = tf.placeholder(tf.float32, [self.batch_size, 512, 512, 3], name='real_images')
self.random_noise = tf.placeholder(tf.float32, [None, self.random_noise_dim], name='random_noise')
#### tensorboard
self.random_noise_summary = tf.summary.histogram("random_noise_summary", self.random_noise)
# z_sum
## Building model
# Creating generator / discriminator
self.generator = self.generator(self.random_noise)
self.discriminator_police_sigmoid, self.discriminator_police, self.discriminator_police_class_softmax, self.discriminator_police_class = self.discriminator(
self.real_image, reuse=False)
self.discriminator_thief_sigmoid, self.discriminator_thief, self.discriminator_thief_class_softmax, self.discriminator_thief_class = self.discriminator(
self.generator, reuse=True)
self.sampler = self.sampler(self.random_noise)
#### tensorboard
self.discriminator_police_summary = tf.summary.histogram("discriminator_police_summary",
self.discriminator_police_sigmoid)
# d_sum
self.discriminator_police_class_summary = tf.summary.histogram("discriminator_police_class_summary",
self.discriminator_police_class_softmax)
# d_c_sum
self.discriminator_thief_summary = tf.summary.histogram("discriminator_thief_summary",
self.discriminator_thief_sigmoid)
# d__sum
self.discriminator_thief_class_summary = tf.summary.histogram("discriminator_thief_class_summary",
self.discriminator_thief_class_softmax)
# d_c__sum
self.generator_summary = tf.summary.image("generator_summary", self.generator)
# G_sum
## Find Accuracy
# classifcation real_label
correct_prediction = tf.equal(tf.argmax(self.y, 1), tf.argmax(self.discriminator_police_class, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
## Creating loss function - Find cost
# real image discriminator cost
self.discriminator_police_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.discriminator_police,
labels=tf.ones_like(self.discriminator_police_sigmoid)))
# fake image discriminator cost
self.discriminator_thief_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.discriminator_thief,
labels=tf.zeros_like(self.discriminator_thief_sigmoid) * 0.9))
# real image discriminator classification cost
self.discriminator_loss_class_real = tf.reduce_mean(tf.compat.v1.nn.softmax_cross_entropy_with_logits_v2(
logits=self.discriminator_police_class,
labels=1.0 * self.y))
# generator image discriminator classification cost
self.generator_loss_class_fake = tf.reduce_mean(tf.compat.v1.nn.softmax_cross_entropy_with_logits_v2(
logits=self.discriminator_thief_class,
labels=(1.0 / self.label_dim) *
tf.ones_like(self.discriminator_thief_class_softmax)))
# generator cost
self.generator_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.discriminator_thief,
labels=tf.ones_like(self.discriminator_thief_sigmoid)))
# Generator fake image cost
# self.generator_loss_fake = -tf.reduce_mean(tf.log(self.discriminator_thief_sigmoid))
# generator, discriminator loss
# Total generator loss
self.generator_loss = self.generator_loss_fake + 1.0 * self.generator_loss_class_fake
#
self.discriminator_loss = self.discriminator_police_loss + self.discriminator_thief_loss + self.discriminator_loss_class_real # 1 + 0 + 1 = 2
#### tensorboard
self.discriminator_police_loss_summary = tf.summary.scalar("discriminator_police_loss_summary",
self.discriminator_police_loss)
# d_loss_real_sum
self.discriminator_thief_loss_summary = tf.summary.scalar("discriminator_thief_loss_summary",
self.discriminator_thief_loss)
# d_loss_fake_sum
self.discriminator_police_class_loss_summary = tf.summary.scalar("discriminator_police_class_loss",
self.discriminator_loss_class_real)
# d_loss_class_real_sum
self.generator_loss_class_fake_summary = tf.summary.scalar("generator_loss_class_fake",
self.generator_loss_class_fake)
# g_loss_class_fake_sum
self.generator_loss_summary = tf.summary.scalar("generator_loss_summary", self.generator_loss)
# g_loss_sum
self.discriminator_loss_summary = tf.summary.scalar("discriminator_loss_summary", self.discriminator_loss)
# d_loss_sum
t_vars = tf.trainable_variables()
self.discriminator_vars = [var for var in t_vars if 'd_' in var.name]
self.generator_vars = [var for var in t_vars if 'g_' in var.name]
# Creating checkpoint saver
self.saver = tf.train.Saver()
def train(self):
# Creating Optimizer
discriminator_optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.6).minimize(self.discriminator_loss,
var_list=self.discriminator_vars)
generator_optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.6).minimize(self.generator_loss,
var_list=self.generator_vars)
#### tensorboard
generator_optimizer_summary = tf.summary.merge(
[self.random_noise_summary, self.discriminator_thief_summary, self.generator_summary,
self.discriminator_thief_loss_summary, self.generator_loss_summary])
discriminator_optimizer_summary = tf.summary.merge(
[self.random_noise_summary, self.discriminator_police_summary,
self.discriminator_police_loss_summary, self.discriminator_loss_summary,
self.discriminator_police_class_loss_summary, self.generator_loss_class_fake_summary])
# Writing tensorboard
self.writer = tf.summary.FileWriter(self.tensorboard_dir, self.sess.graph)
tf.global_variables_initializer().run()
## Creating sample -> test part
sample_random_noise = np.random.normal(0, 1, [self.sample_size, self.random_noise_dim]).astype(np.float32)
# Convert (256,256) images into (256,256,3)
shuffle(self.data)
# sample_images_path = self.data[0: self.sample_size]
# sample_images_ = [get_image(sample_image_path,
# input_height=self.input_size,
# input_width=self.input_size,
# resize_height=self.output_size,
# resize_width=self.output_size,
# crop=False) for sample_image_path in sample_images_path]
#
# sample_images = np.array(sample_images_).astype(np.float32)
# sample_labels = get_y(sample_images_path, self.label_dim, self.label_dict, self.df) # get label(classification)
# checkpoint variable
counter = 1
# checkpoint load
checkpoint_dir_path = os.path.join(self.checkpoint_dir, self.checkpint_dir_model)
could_load, checkpoint_counter = checkpoint_load(self.sess, self.saver, self.checkpoint_dir,
self.checkpint_dir_model)
if could_load:
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
## training
for epoch in xrange(self.epoch):
shuffle(self.data)
batch_index = min(len(self.data), np.inf) // self.batch_size
print(batch_index)
for index in xrange(0, batch_index):
## Creating batch -> training part
batch_images_path = self.data[index * self.batch_size: (index + 1) * self.batch_size]
batch_images_ = [get_image(batch_image_path,
input_height=self.input_size,
input_width=self.input_size,
resize_height=self.output_size,
resize_width=self.output_size,
crop=False) for batch_image_path in batch_images_path]
batch_images = np.array(batch_images_).astype(np.float32)
batch_labels = get_y(batch_images_path, self.label_dim, self.label_dict,
self.df) # get label(classification)
batch_random_noise = np.random.normal(0, 1, [self.batch_size, self.random_noise_dim]).astype(np.float32)
## Update
# Update D network
_, summary = self.sess.run([discriminator_optimizer, discriminator_optimizer_summary],
feed_dict={self.real_image: batch_images,
self.random_noise: batch_random_noise,
self.y: batch_labels})
self.writer.add_summary(summary, counter)
# Update G network
_, summary = self.sess.run([generator_optimizer, generator_optimizer_summary],
feed_dict={self.random_noise: batch_random_noise})
self.writer.add_summary(summary, counter)
errD_fake = self.discriminator_thief_loss.eval(
{self.random_noise: batch_random_noise, self.y: batch_labels})
errD_real = self.discriminator_police_loss.eval({self.real_image: batch_images, self.y: batch_labels})
# change
# errG = self.generator_loss.eval({self.random_noise: batch_random_noise })
errG = self.generator_loss.eval({self.random_noise: batch_random_noise, self.y: batch_labels})
# Find cost value
errD_class_real = self.discriminator_loss_class_real.eval(
{self.real_image: batch_images, self.y: batch_labels})
errG_class_fake = self.generator_loss_class_fake.eval(
{self.real_image: batch_images, self.random_noise: batch_random_noise})
accuracy = self.accuracy.eval({self.real_image: batch_images, self.y: batch_labels})
# global value --> checkpoint value
counter += 1
print("Epoch: [%2d] [%4d/%4d], d_loss: %.8f, g_loss: %.8f" % (
epoch, index, batch_index, errD_fake + errD_real + errD_class_real, errG))
print("Discriminator class acc: %.2f" % (accuracy))
## image save
if np.mod(counter, 300) == 1:
try:
# samples = self.sess.run(self.sampler, feed_dict={self.random_noise: sample_random_noise,
# self.real_image: sample_images,
# self.y: sample_labels})
# # save_images(samples, image_manifold_size(samples.shape[0]),
# # './{}/train_{:02d}_{:04d}.png'.format('samples', epoch, index))
# print(samples.shape)
# save_single_image(samples,
# './{}/new_sampler_train_{:02d}_{:04d}.png'.format('samples', epoch, index))
samples = self.sess.run(self.generator)
save_images(samples, image_manifold_size(samples.shape[0]),
'./{}/train_{:02d}_{:04d}.png'.format('samples', epoch, index))
print("[SAVE IMAGE]")
except Exception as e:
print("image save error! ", e)
# checkpoint save
if np.mod(counter, 500) == 1:
print("[SAVE CHECKPOINT]")
checkpoint_save(self.sess, self.saver, checkpoint_dir_path, counter)
## discriminator
def discriminator(self, input_, reuse=False):
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables() # for reusing variables
# ! padding -> SAME -> VALID => ops.py
discriminator_layer0 = lrelu(conv2d(input_, 32, name='d_h0_conv')) # [256, 256, 3], 32 => (128, 128, 32)
discriminator_layer1 = lrelu(
batch_norm(conv2d(discriminator_layer0, 64, name='d_h1_conv'), 'd_bn1')) # (?, 64, 64, 64)
discriminator_layer2 = lrelu(
batch_norm(conv2d(discriminator_layer1, 128, name='d_h2_conv'), 'd_bn2')) # (?, 32, 32, 128)
discriminator_layer3 = lrelu(
batch_norm(conv2d(discriminator_layer2, 256, name='d_h3_conv'), 'd_bn3')) # (?, 16, 16, 256)
discriminator_layer4 = lrelu(
batch_norm(conv2d(discriminator_layer3, 512, name='d_h4_conv'), 'd_bn4')) # (?, 8, 8, 512)
discriminator_layer5 = lrelu(
batch_norm(conv2d(discriminator_layer4, 512, name='d_h5_conv'), 'd_bn5')) # (?, 4, 4, 512)
shape = np.product(discriminator_layer5.get_shape()[1:].as_list()) #
discriminator_layer6 = tf.reshape(discriminator_layer5, [-1, shape]) #
discriminator_output = linear(discriminator_layer6, 1, 'd_ro_lin') # (?, 1)
discriminator_layer7 = lrelu(linear(discriminator_layer6, 1024, 'd_h8_lin')) #
discriminator_layer8 = lrelu(linear(discriminator_layer7, 512, 'd_h9_lin')) #
discriminator_class_output = linear(discriminator_layer8, self.label_dim, 'd_co_lin') #
discriminator_class_output_softmax = tf.nn.softmax(discriminator_class_output) # (?, self.label_dim)
return tf.nn.sigmoid(
discriminator_output), discriminator_output, discriminator_class_output_softmax, discriminator_class_output
## generator
def generator(self, random_noise):
with tf.variable_scope("generator") as scope:
generator_linear = linear(random_noise, 64 * 4 * 4 * 16, 'g_h0_lin') # ([?, 100], 16,384])
generator_reshape = tf.reshape(generator_linear, [-1, 4, 4, 64 * 16]) # (?, 4, 4, 1024)
generator_input = tf.nn.relu(batch_norm(generator_reshape, 'g_bn0')) # (?, 4, 4, 1024)
generator_layer1 = deconv2d(generator_input, [self.batch_size, 8, 8, 64 * 16],
name='g_layer1') # (?, 8, 8, 1024)
generator_layer1 = tf.nn.relu(batch_norm(generator_layer1, 'g_bn1')) # (?, 8, 8, 1024)
generator_layer2 = deconv2d(generator_layer1, [self.batch_size, 16, 16, 64 * 8],
name='g_layer2') # (?, 16, 16, 512)
generator_layer2 = tf.nn.relu(batch_norm(generator_layer2, 'g_bn2')) # (?, 16, 16, 512)
generator_layer3 = deconv2d(generator_layer2, [self.batch_size, 32, 32, 64 * 4],
name='g_layer3') # (?, 32, 32, 256)
generator_layer3 = tf.nn.relu(batch_norm(generator_layer3, 'g_bn3')) # (?, 32, 32, 256)
generator_layer4 = deconv2d(generator_layer3, [self.batch_size, 64, 64, 64 * 2],
name='g_layer4') # (?, 64, 64, 128)
generator_layer4 = tf.nn.relu(batch_norm(generator_layer4, 'g_bn4')) # (?, 64, 64, 128)
generator_layer5 = deconv2d(generator_layer4, [self.batch_size, 128, 128, 64],
name='g_layer5') # (?, 128, 128, 64)
generator_layer5 = tf.nn.relu(batch_norm(generator_layer5, 'g_bn5')) # (?, 128, 128, 64)
generator_layer6 = deconv2d(generator_layer5, [self.batch_size, 256, 256, 3],
name='g_layer6') # (?, 256, 256, 3)
generator_layer6 = tf.nn.relu(batch_norm(generator_layer6, 'g_bn6'))
generator_output = deconv2d(generator_layer6, [self.batch_size, 512, 512, 3], name='g_output')
generator_output = tf.nn.tanh(generator_output) # (?, 512, 512, 3)
return generator_output # (?, 512, 512, 3)
## sampler
# def sampler(self, random_noise):
# with tf.variable_scope("generator") as scope:
# scope.reuse_variables()
#
# sampler_linear = linear(random_noise, 64 * 4 * 4 * 16, 'g_h0_lin') # ([?, 100], 16,384])
# sampler_reshape = tf.reshape(sampler_linear, [-1, 4, 4, 64 * 16]) # (?, 4, 4, 1024)
# sampler_input = tf.nn.relu(batch_norm(sampler_reshape, 'g_bn0', train=False)) # (?, 4, 4, 1024)
#
# sampler_layer1 = deconv2d(sampler_input, [self.batch_size, 8, 8, 64 * 16],
# name='g_layer1') # (?, 8, 8, 1024)
# sampler_layer1 = tf.nn.relu(batch_norm(sampler_layer1, 'g_bn1', train=False)) # (?, 8, 8, 1024)
#
# sampler_layer2 = deconv2d(sampler_layer1, [self.batch_size, 16, 16, 64 * 8],
# name='g_layer2') # (?, 16, 16, 512)
# sampler_layer2 = tf.nn.relu(batch_norm(sampler_layer2, 'g_bn2', train=False)) # (?, 16, 16, 512)
#
# sampler_layer3 = deconv2d(sampler_layer2, [self.batch_size, 32, 32, 64 * 4],
# name='g_layer3') # (?, 32, 32, 256)
# sampler_layer3 = tf.nn.relu(batch_norm(sampler_layer3, 'g_bn3', train=False)) # (?, 32, 32, 256)
#
# sampler_layer4 = deconv2d(sampler_layer3, [self.batch_size, 64, 64, 64 * 2],
# name='g_layer4') # (?, 64, 64, 128)
# sampler_layer4 = tf.nn.relu(batch_norm(sampler_layer4, 'g_bn4', train=False)) # (?, 64, 64, 128)
#
# sampler_layer5 = deconv2d(sampler_layer4, [self.batch_size, 128, 128, 64],
# name='g_layer5') # (?, 128, 128, 64)
# sampler_layer5 = tf.nn.relu(batch_norm(sampler_layer5, 'g_bn5', train=False)) # (?, 128, 128, 64)
#
# sampler_layer6 = deconv2d(sampler_layer5, [self.batch_size, 256, 256, 3],
# name='g_layer6') # (?, 256, 256, 3)
#
# sampler_layer6 = tf.nn.relu(batch_norm(sampler_layer6, 'g_bn6'))
# sampler_output = deconv2d(sampler_layer6, [self.batch_size, 512, 512, 3], name='g_output')
# sampler_output = tf.nn.tanh(sampler_output) # (?, 512, 512, 3)
#
# sampler_output = sampler_output[:1, :, :]
#
# return sampler_output # (1, 512, 512, 3)