forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mc_nvt_hs.f90
194 lines (149 loc) · 8.95 KB
/
mc_nvt_hs.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
! mc_nvt_hs.f90
! Monte Carlo simulation, NVT ensemble, hard spheres
PROGRAM mc_nvt_hs
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of atoms (positions)
! Cubic periodic boundary conditions
! Conducts Monte Carlo (the temperature is irrelevant)
! Uses no special neighbour lists
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! We take kT=1 throughout defining the unit of energy
! Positions r are divided by box length after reading in
! However, input configuration, output configuration, most calculations, and all results
! are given in simulation units defined by the model,
! in this case, for hard spheres, sigma = 1
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE maths_module, ONLY : random_translate_vector
USE mc_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& overlap_1, overlap, n, r
IMPLICIT NONE
! Most important variables
REAL :: box ! Box length
REAL :: dr_max ! Maximum MC displacement
REAL :: eps_box ! Pressure scaling parameter
INTEGER :: blk, stp, i, nstep, nblock, moves, ioerr
REAL, DIMENSION(3) :: ri
REAL :: m_ratio
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
NAMELIST /nml/ nblock, nstep, dr_max, eps_box
WRITE( unit=output_unit, fmt='(a)' ) 'mc_nvt_hs'
WRITE( unit=output_unit, fmt='(a)' ) 'Monte Carlo, constant-NVT'
CALL introduction
CALL RANDOM_SEED () ! Initialize random number generator
! Set sensible default run parameters for testing
nblock = 10
nstep = 10000
dr_max = 0.15
eps_box = 0.005
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in mc_nvt_hs'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Maximum displacement', dr_max
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Pressure scaling parameter', eps_box
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box ) ! First call just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Simulation box length', box
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Density', REAL(n) / box**3
CALL allocate_arrays ! Allocates r
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box, r ) ! Second call to get r
r(:,:) = r(:,:) / box ! Convert positions to box units
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries
! Initial pressure calculation and overlap check
IF ( overlap ( box ) ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration'
STOP 'Error in mc_nvt_hs'
END IF
! Initialize arrays for averaging and write column headings
m_ratio = 0.0
CALL run_begin ( calc_variables() )
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
moves = 0
DO i = 1, n ! Begin loop over atoms
ri(:) = random_translate_vector ( dr_max/box, r(:,i) ) ! Trial move to new position (in box=1 units)
ri(:) = ri(:) - ANINT ( ri(:) ) ! Periodic boundary correction
IF ( .NOT. overlap_1 ( ri, i, box ) ) THEN ! Accept
r(:,i) = ri(:) ! Update position
moves = moves + 1 ! Increment move counter
END IF ! End accept
END DO ! End loop over atoms
m_ratio = REAL(moves) / REAL(n)
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, box, r*box ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, box, r*box ) ! Write out final configuration
CALL deallocate_arrays
CALL conclusion
CONTAINS
FUNCTION calc_variables () RESULT ( variables )
USE averages_module, ONLY : variable_type
USE mc_module, ONLY : n_overlap
IMPLICIT NONE
TYPE(variable_type), DIMENSION(2) :: variables ! The 2 variables listed below
! This routine calculates all variables of interest and (optionally) writes them out
! They are collected together in the variables array, for use in the main program
TYPE(variable_type) :: m_r, p_f
REAL :: vir, vol, rho
! Preliminary calculations (m_ratio, eps_box, box etc already known)
vir = REAL ( n_overlap ( box/(1.0+eps_box) ) ) / (3.0*eps_box) ! Virial
vol = box**3 ! Volume
rho = REAL(n) / vol ! Density
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Move acceptance ratio
m_r = variable_type ( nam = 'Move ratio', val = m_ratio, instant = .FALSE. )
! Pressure in units kT/sigma**3
! Ideal gas contribution plus total virial divided by V
p_f = variable_type ( nam = 'P', val = rho + vir/vol )
! Collect together for averaging
variables = [ m_r, p_f ]
END FUNCTION calc_variables
END PROGRAM mc_nvt_hs