forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_pretraining.py
218 lines (188 loc) · 8.26 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run masked LM/next sentence pre-training for BERT in TF 2.x."""
# Import libraries
from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf
from official.common import distribute_utils
from official.modeling import performance
from official.nlp import optimization
from official.nlp.bert import bert_models
from official.nlp.bert import common_flags
from official.nlp.bert import configs
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_training_utils
flags.DEFINE_string('input_files', None,
'File path to retrieve training data for pre-training.')
# Model training specific flags.
flags.DEFINE_integer(
'max_seq_length', 128,
'The maximum total input sequence length after WordPiece tokenization. '
'Sequences longer than this will be truncated, and sequences shorter '
'than this will be padded.')
flags.DEFINE_integer('max_predictions_per_seq', 20,
'Maximum predictions per sequence_output.')
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
flags.DEFINE_integer('num_steps_per_epoch', 1000,
'Total number of training steps to run per epoch.')
flags.DEFINE_float('warmup_steps', 10000,
'Warmup steps for Adam weight decay optimizer.')
flags.DEFINE_bool('use_next_sentence_label', True,
'Whether to use next sentence label to compute final loss.')
flags.DEFINE_bool('train_summary_interval', 0, 'Step interval for training '
'summaries. If the value is a negative number, '
'then training summaries are not enabled.')
common_flags.define_common_bert_flags()
FLAGS = flags.FLAGS
def get_pretrain_dataset_fn(input_file_pattern, seq_length,
max_predictions_per_seq, global_batch_size,
use_next_sentence_label=True):
"""Returns input dataset from input file string."""
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed BERT pretraining."""
input_patterns = input_file_pattern.split(',')
batch_size = ctx.get_per_replica_batch_size(global_batch_size)
train_dataset = input_pipeline.create_pretrain_dataset(
input_patterns,
seq_length,
max_predictions_per_seq,
batch_size,
is_training=True,
input_pipeline_context=ctx,
use_next_sentence_label=use_next_sentence_label)
return train_dataset
return _dataset_fn
def get_loss_fn():
"""Returns loss function for BERT pretraining."""
def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args):
return tf.reduce_mean(losses)
return _bert_pretrain_loss_fn
def run_customized_training(strategy,
bert_config,
init_checkpoint,
max_seq_length,
max_predictions_per_seq,
model_dir,
steps_per_epoch,
steps_per_loop,
epochs,
initial_lr,
warmup_steps,
end_lr,
optimizer_type,
input_files,
train_batch_size,
use_next_sentence_label=True,
train_summary_interval=0,
custom_callbacks=None,
explicit_allreduce=False,
pre_allreduce_callbacks=None,
post_allreduce_callbacks=None,
allreduce_bytes_per_pack=0):
"""Run BERT pretrain model training using low-level API."""
train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
max_predictions_per_seq,
train_batch_size,
use_next_sentence_label)
def _get_pretrain_model():
"""Gets a pretraining model."""
pretrain_model, core_model = bert_models.pretrain_model(
bert_config, max_seq_length, max_predictions_per_seq,
use_next_sentence_label=use_next_sentence_label)
optimizer = optimization.create_optimizer(
initial_lr, steps_per_epoch * epochs, warmup_steps,
end_lr, optimizer_type)
pretrain_model.optimizer = performance.configure_optimizer(
optimizer,
use_float16=common_flags.use_float16(),
use_graph_rewrite=common_flags.use_graph_rewrite())
return pretrain_model, core_model
trained_model = model_training_utils.run_customized_training_loop(
strategy=strategy,
model_fn=_get_pretrain_model,
loss_fn=get_loss_fn(),
scale_loss=FLAGS.scale_loss,
model_dir=model_dir,
init_checkpoint=init_checkpoint,
train_input_fn=train_input_fn,
steps_per_epoch=steps_per_epoch,
steps_per_loop=steps_per_loop,
epochs=epochs,
sub_model_export_name='pretrained/bert_model',
explicit_allreduce=explicit_allreduce,
pre_allreduce_callbacks=pre_allreduce_callbacks,
post_allreduce_callbacks=post_allreduce_callbacks,
allreduce_bytes_per_pack=allreduce_bytes_per_pack,
train_summary_interval=train_summary_interval,
custom_callbacks=custom_callbacks)
return trained_model
def run_bert_pretrain(strategy, custom_callbacks=None):
"""Runs BERT pre-training."""
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
if not strategy:
raise ValueError('Distribution strategy is not specified.')
# Runs customized training loop.
logging.info('Training using customized training loop TF 2.0 with distributed'
'strategy.')
performance.set_mixed_precision_policy(common_flags.dtype())
# Only when explicit_allreduce = True, post_allreduce_callbacks and
# allreduce_bytes_per_pack will take effect. optimizer.apply_gradients() no
# longer implicitly allreduce gradients, users manually allreduce gradient and
# pass the allreduced grads_and_vars to apply_gradients().
# With explicit_allreduce = True, clip_by_global_norm is moved to after
# allreduce.
return run_customized_training(
strategy,
bert_config,
FLAGS.init_checkpoint, # Used to initialize only the BERT submodel.
FLAGS.max_seq_length,
FLAGS.max_predictions_per_seq,
FLAGS.model_dir,
FLAGS.num_steps_per_epoch,
FLAGS.steps_per_loop,
FLAGS.num_train_epochs,
FLAGS.learning_rate,
FLAGS.warmup_steps,
FLAGS.end_lr,
FLAGS.optimizer_type,
FLAGS.input_files,
FLAGS.train_batch_size,
FLAGS.use_next_sentence_label,
FLAGS.train_summary_interval,
custom_callbacks=custom_callbacks,
explicit_allreduce=FLAGS.explicit_allreduce,
pre_allreduce_callbacks=[
model_training_utils.clip_by_global_norm_callback
],
allreduce_bytes_per_pack=FLAGS.allreduce_bytes_per_pack)
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
if not FLAGS.model_dir:
FLAGS.model_dir = '/tmp/bert20/'
# Configures cluster spec for multi-worker distribution strategy.
if FLAGS.num_gpus > 0:
_ = distribute_utils.configure_cluster(FLAGS.worker_hosts, FLAGS.task_index)
strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
all_reduce_alg=FLAGS.all_reduce_alg,
tpu_address=FLAGS.tpu)
if strategy:
print('***** Number of cores used : ', strategy.num_replicas_in_sync)
run_bert_pretrain(strategy)
if __name__ == '__main__':
app.run(main)