forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf2_encoder_checkpoint_converter.py
160 lines (132 loc) · 5.74 KB
/
tf2_encoder_checkpoint_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A converter from a V1 BERT encoder checkpoint to a V2 encoder checkpoint.
The conversion will yield an object-oriented checkpoint that can be used
to restore a BertEncoder or BertPretrainerV2 object (see the `converted_model`
FLAG below).
"""
import os
from absl import app
from absl import flags
import tensorflow as tf
from official.modeling import tf_utils
from official.nlp.bert import configs
from official.nlp.bert import tf1_checkpoint_converter_lib
from official.nlp.modeling import models
from official.nlp.modeling import networks
FLAGS = flags.FLAGS
flags.DEFINE_string("bert_config_file", None,
"Bert configuration file to define core bert layers.")
flags.DEFINE_string(
"checkpoint_to_convert", None,
"Initial checkpoint from a pretrained BERT model core (that is, only the "
"BertModel, with no task heads.)")
flags.DEFINE_string("converted_checkpoint_path", None,
"Name for the created object-based V2 checkpoint.")
flags.DEFINE_string("checkpoint_model_name", "encoder",
"The name of the model when saving the checkpoint, i.e., "
"the checkpoint will be saved using: "
"tf.train.Checkpoint(FLAGS.checkpoint_model_name=model).")
flags.DEFINE_enum(
"converted_model", "encoder", ["encoder", "pretrainer"],
"Whether to convert the checkpoint to a `BertEncoder` model or a "
"`BertPretrainerV2` model (with mlm but without classification heads).")
def _create_bert_model(cfg):
"""Creates a BERT keras core model from BERT configuration.
Args:
cfg: A `BertConfig` to create the core model.
Returns:
A BertEncoder network.
"""
bert_encoder = networks.BertEncoder(
vocab_size=cfg.vocab_size,
hidden_size=cfg.hidden_size,
num_layers=cfg.num_hidden_layers,
num_attention_heads=cfg.num_attention_heads,
intermediate_size=cfg.intermediate_size,
activation=tf_utils.get_activation(cfg.hidden_act),
dropout_rate=cfg.hidden_dropout_prob,
attention_dropout_rate=cfg.attention_probs_dropout_prob,
max_sequence_length=cfg.max_position_embeddings,
type_vocab_size=cfg.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=cfg.initializer_range),
embedding_width=cfg.embedding_size)
return bert_encoder
def _create_bert_pretrainer_model(cfg):
"""Creates a BERT keras core model from BERT configuration.
Args:
cfg: A `BertConfig` to create the core model.
Returns:
A BertPretrainerV2 model.
"""
bert_encoder = _create_bert_model(cfg)
pretrainer = models.BertPretrainerV2(
encoder_network=bert_encoder,
mlm_activation=tf_utils.get_activation(cfg.hidden_act),
mlm_initializer=tf.keras.initializers.TruncatedNormal(
stddev=cfg.initializer_range))
# Makes sure the pretrainer variables are created.
_ = pretrainer(pretrainer.inputs)
return pretrainer
def convert_checkpoint(bert_config,
output_path,
v1_checkpoint,
checkpoint_model_name="model",
converted_model="encoder"):
"""Converts a V1 checkpoint into an OO V2 checkpoint."""
output_dir, _ = os.path.split(output_path)
tf.io.gfile.makedirs(output_dir)
# Create a temporary V1 name-converted checkpoint in the output directory.
temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1")
temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt")
tf1_checkpoint_converter_lib.convert(
checkpoint_from_path=v1_checkpoint,
checkpoint_to_path=temporary_checkpoint,
num_heads=bert_config.num_attention_heads,
name_replacements=tf1_checkpoint_converter_lib.BERT_V2_NAME_REPLACEMENTS,
permutations=tf1_checkpoint_converter_lib.BERT_V2_PERMUTATIONS,
exclude_patterns=["adam", "Adam"])
if converted_model == "encoder":
model = _create_bert_model(bert_config)
elif converted_model == "pretrainer":
model = _create_bert_pretrainer_model(bert_config)
else:
raise ValueError("Unsupported converted_model: %s" % converted_model)
# Create a V2 checkpoint from the temporary checkpoint.
tf1_checkpoint_converter_lib.create_v2_checkpoint(model, temporary_checkpoint,
output_path,
checkpoint_model_name)
# Clean up the temporary checkpoint, if it exists.
try:
tf.io.gfile.rmtree(temporary_checkpoint_dir)
except tf.errors.OpError:
# If it doesn't exist, we don't need to clean it up; continue.
pass
def main(argv):
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
output_path = FLAGS.converted_checkpoint_path
v1_checkpoint = FLAGS.checkpoint_to_convert
checkpoint_model_name = FLAGS.checkpoint_model_name
converted_model = FLAGS.converted_model
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
convert_checkpoint(
bert_config=bert_config,
output_path=output_path,
v1_checkpoint=v1_checkpoint,
checkpoint_model_name=checkpoint_model_name,
converted_model=converted_model)
if __name__ == "__main__":
app.run(main)