-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfpn.py
335 lines (271 loc) · 13.9 KB
/
fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet50 model definition compatible with TensorFlow's eager execution.
Reference [Deep Residual Learning for Image
Recognition](https://arxiv.org/abs/1512.03385)
Adapted from tf.keras.applications.ResNet50. A notable difference is that the
model here outputs logits while the Keras model outputs probability.
Retina Feature Pyramid Network based on ResNet50
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import utils.layers as ul
class _IdentityBlock(tfe.Network):
"""_IdentityBlock is the block that has no conv layer at shortcut.
Args:
kernel_size: the kernel size of middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
data_format: data_format for the input ('channels_first' or
'channels_last').
"""
def __init__(self, kernel_size, filters, stage, block, data_format):
super(_IdentityBlock, self).__init__(name='')
filters1, filters2, filters3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
bn_axis = 1 if data_format == 'channels_first' else 3
self.conv2a = self.track_layer(tf.layers.Conv2D(
filters1, (1, 1), name=conv_name_base + '2a', data_format=data_format))
self.bn2a = self.track_layer(
tf.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a'))
self.conv2b = self.track_layer(tf.layers.Conv2D(
filters2, kernel_size, padding='same', data_format=data_format, name=conv_name_base + '2b'))
self.bn2b = self.track_layer(
tf.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b'))
self.conv2c = self.track_layer(tf.layers.Conv2D(
filters3, (1, 1), name=conv_name_base + '2c', data_format=data_format))
self.bn2c = self.track_layer(
tf.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c'))
def call(self, inputs, training=False):
x = self.conv2a(inputs)
x = self.bn2a(x, training=training)
x = tf.nn.relu(x)
x = self.conv2b(x)
x = self.bn2b(x, training=training)
x = tf.nn.relu(x)
x = self.conv2c(x)
x = self.bn2c(x, training=training)
x += inputs
return tf.nn.relu(x)
class _ConvBlock(tfe.Network):
"""_ConvBlock is the block that has a conv layer at shortcut.
Args:
kernel_size: the kernel size of middle conv layer at main path
filters: list of integers, the filterss of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
data_format: data_format for the input ('channels_first' or
'channels_last').
strides: strides for the convolution. Note that from stage 3, the first
conv layer at main path is with strides=(2,2), and the shortcut should
have strides=(2,2) as well.
"""
def __init__(self, kernel_size, filters, stage, block, data_format, strides=(2, 2)):
super(_ConvBlock, self).__init__(name='')
filters1, filters2, filters3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
bn_axis = 1 if data_format == 'channels_first' else 3
self.conv2a = self.track_layer(tf.layers.Conv2D(
filters1, (1, 1), strides=strides, name=conv_name_base + '2a', data_format=data_format))
self.bn2a = self.track_layer(
tf.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a'))
self.conv2b = self.track_layer(tf.layers.Conv2D(
filters2, kernel_size, padding='same', name=conv_name_base + '2b', data_format=data_format))
self.bn2b = self.track_layer(
tf.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b'))
self.conv2c = self.track_layer(tf.layers.Conv2D(
filters3, (1, 1), name=conv_name_base + '2c', data_format=data_format))
self.bn2c = self.track_layer(
tf.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c'))
self.conv_shortcut = self.track_layer(tf.layers.Conv2D(
filters3, (1, 1), strides=strides, name=conv_name_base + '1', data_format=data_format))
self.bn_shortcut = self.track_layer(
tf.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '1'))
def call(self, inputs, training=False):
x = self.conv2a(inputs)
x = self.bn2a(x, training=training)
x = tf.nn.relu(x)
x = self.conv2b(x)
x = self.bn2b(x, training=training)
x = tf.nn.relu(x)
x = self.conv2c(x)
x = self.bn2c(x, training=training)
shortcut = self.conv_shortcut(inputs)
shortcut = self.bn_shortcut(shortcut, training=training)
x += shortcut
return tf.nn.relu(x)
class ResFPN(tfe.Network):
"""Instantiates the ResNet50 architecture.
Args:
data_format: format for the image. Either 'channels_first' or
'channels_last'. 'channels_first' is typically faster on GPUs while
'channels_last' is typically faster on CPUs. See
https://www.tensorflow.org/performance/performance_guide#data_formats
name: Prefix applied to names of variables created in the model.
trainable: Is the model trainable? If true, performs backward
and optimization after call() method.
include_top: whether to include the fully-connected layer at the top of the
network.
pooling: Optional pooling mode for feature extraction when `include_top`
is `False`.
- `None` means that the output of the model will be the 4D tensor
output of the last convolutional layer.
- `avg` means that global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be
a 2D tensor.
- `max` means that global max pooling will be applied.
classes: optional number of classes to classify images into, only to be
specified if `include_top` is True.
Raises:
ValueError: in case of invalid argument for data_format.
"""
def __init__(self):
super(ResFPN, self).__init__(name='')
data_format = 'channels_first'
bn_axis = 1
def conv2d(filters, kernel_size, strides=1, activation=tf.nn.relu, name=None):
"""Mainly use to freeze data_format and padding"""
l = tf.layers.Conv2D(filters, kernel_size,
strides=strides,
activation=activation,
padding='same',
data_format='channels_first',
name=name)
return self.track_layer(l)
def conv2d_transpose(filters, kernel_size, strides=1, activation=tf.nn.relu, name=None):
l = tf.layers.Conv2DTranspose(filters, kernel_size,
strides=strides,
activation=activation,
padding='same',
data_format='channels_first',
name=name)
return self.track_layer(l)
def conv_block(filters, stage, block, strides=(2, 2)):
l = _ConvBlock(3, filters, stage=stage, block=block, data_format=data_format, strides=strides)
return self.track_layer(l)
def id_block(filters, stage, block):
l = _IdentityBlock(3, filters, stage=stage, block=block, data_format=data_format)
return self.track_layer(l)
# Bottom-up
# ==========================================================================================================
self.conv1 = conv2d(64, 7, strides=2, activation=None, name='conv1')
self.bn_conv1 = self.track_layer(tf.layers.BatchNormalization(axis=bn_axis, name='bn_conv1'))
self.max_pool = self.track_layer(tf.layers.MaxPooling2D((3, 3), strides=(2, 2), data_format=data_format))
self.l2a = conv_block([64, 64, 256], stage=2, block='a', strides=(1, 1))
self.l2b = id_block([64, 64, 256], stage=2, block='b')
self.l2c = id_block([64, 64, 256], stage=2, block='c')
self.l3a = conv_block([128, 128, 512], stage=3, block='a')
self.l3b = id_block([128, 128, 512], stage=3, block='b')
self.l3c = id_block([128, 128, 512], stage=3, block='c')
self.l3d = id_block([128, 128, 512], stage=3, block='d')
self.l4a = conv_block([256, 256, 1024], stage=4, block='a')
self.l4b = id_block([256, 256, 1024], stage=4, block='b')
self.l4c = id_block([256, 256, 1024], stage=4, block='c')
self.l4d = id_block([256, 256, 1024], stage=4, block='d')
self.l4e = id_block([256, 256, 1024], stage=4, block='e')
self.l4f = id_block([256, 256, 1024], stage=4, block='f')
self.l5a = conv_block([512, 512, 2048], stage=5, block='a')
self.l5b = id_block([512, 512, 2048], stage=5, block='b')
self.l5c = id_block([512, 512, 2048], stage=5, block='c')
self.conv6 = conv2d(256, 3, strides=2, name='conv6')
self.conv7 = conv2d(256, 3, strides=2, name='conv7')
# Lateral
# ===================================================================================
self.latlayer1 = conv2d(256, 1, name='lateral1')
self.latlayer2 = conv2d(256, 1, name='lateral2')
self.latlayer3 = conv2d(256, 1, name='lateral3')
# Top-down
# ===============================================D===============s====================
self.upsample1 = conv2d_transpose(256, 4, strides=2, name='upsample1')
self.toplayer1 = conv2d(256, 3, name='top1')
self.upsample2 = conv2d_transpose(256, 4, strides=2, name='upsample2')
self.toplayer2 = conv2d(256, 3, name='top2')
def call(self, x, training=False):
# Bottom-up
c1 = self.conv1(x)
c1 = self.bn_conv1(c1, training=training)
c1 = tf.nn.relu(c1)
c1 = self.max_pool(c1)
c2 = self.l2a(c1, training=training)
c2 = self.l2b(c2, training=training)
c2 = self.l2c(c2, training=training)
c3 = self.l3a(c2, training=training)
c3 = self.l3b(c3, training=training)
c3 = self.l3c(c3, training=training)
c3 = self.l3d(c3, training=training)
c4 = self.l4a(c3, training=training)
c4 = self.l4b(c4, training=training)
c4 = self.l4c(c4, training=training)
c4 = self.l4d(c4, training=training)
c4 = self.l4e(c4, training=training)
c4 = self.l4f(c4, training=training)
c5 = self.l5a(c4, training=training)
c5 = self.l5b(c5, training=training)
c5 = self.l5c(c5, training=training)
p6 = self.conv6(c5)
p7 = self.conv7(p6)
# Top-down
p5 = self.latlayer1(c5)
p4 = ul.add_forced(self.upsample1(p5), self.latlayer2(c4))
p4 = self.toplayer1(p4)
p3 = ul.add_forced(self.upsample2(p4), self.latlayer3(c3))
p3 = self.toplayer2(p3)
return p3, p4, p5, p6, p7
# TODO Add track_layer
class MobileFPN(tfe.Network):
def __init__(self):
super(MobileFPN, self).__init__()
def call(self, inputs):
# Bottom-up layers
c1 = ul.conv2d(inputs, 64, 7, strides=2)
c1 = ul.sep_conv2d(c1, 64, 3, strides=1)
c2 = ul.sep_conv2d(c1, 128, 3, strides=2)
c2 = ul.sep_conv2d(c2, 128, 3, strides=1)
c3 = ul.sep_conv2d(c2, 256, 3, strides=2)
c3 = ul.sep_conv2d(c3, 256, 3, strides=1)
c4 = ul.sep_conv2d(c3, 512, 3, strides=2)
c4 = ul.sep_conv2d(c4, 512, 3, strides=1)
c4 = ul.sep_conv2d(c4, 512, 3, strides=1)
c4 = ul.sep_conv2d(c4, 512, 3, strides=1)
c4 = ul.sep_conv2d(c4, 512, 3, strides=1)
p5 = ul.conv2d(c4, 256, 3, strides=2)
p6 = ul.conv2d(p5, 256, 3, strides=2)
# Top-down
p4 = ul.conv2d(c4, 256, 1, activation=None)
u4 = tf.layers.conv2d_transpose(p4, 256, [4, 4], strides=[2, 2], padding='same', data_format='channels_first')
p3 = ul.add_forced(u4, ul.conv2d(c3, 256, 1, activation=None))
p3 = ul.conv2d(p3, 256, 3, activation=None)
u3 = tf.layers.conv2d_transpose(p3, 128, [4, 4], strides=[2, 2], padding='same', data_format='channels_first')
p2 = ul.add_forced(u3, ul.conv2d(c2, 128, 1, activation=None))
p2 = ul.conv2d(p2, 256, 3, activation=None)
return p2, p3, p4, p5, p6
def test():
# model = MobileFPN()
model = ResFPN()
with tf.device("gpu:0"):
inputs = tf.random_uniform([3, 1, 448, 448])
p3, p4, p5, p6, p7 = model(inputs)
print('p2 shape: {}'.format(p3.shape))
print('p6 shape: {}'.format(p7.shape))
if __name__ == "__main__":
tfe.enable_eager_execution()
test()