-
Notifications
You must be signed in to change notification settings - Fork 1
/
image_net.py
265 lines (197 loc) · 8.34 KB
/
image_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import pdb
import torch
from hooks import ViTAttHookHolder, ViTAbsHookHolder
from regularizers import TotalVariation as BaseTotalVariation, FakeColorDistribution as AbstractColorDistribution
from regularizers import FakeBatchNorm as BaseFakeBN, NormalVariation as BaseNormalVariation
from regularizers import ColorVariation as BaseColorVariation
from hooks import TimedHookHolder, LayerHook
import numpy as np
import torch.nn as nn
import random
_nums = '0123456789'
def _abbreviation(name: str) -> str:
if len(name) <= 3:
return name
abr = ''.join(x for x in name if x.isupper() or x in _nums)
return abr[:3]
def _round(num: float) -> str:
if num > 100:
return str(int(round(num, 0)))
if num > 10:
return str(round(num, 1))
return str(round(num, 2))
def fix_random_seed(seed: int = 6247423):
import torch
import numpy as np
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(seed)
np.random.seed(seed)
class InvLoss:
def __init__(self, coefficient: float = 1.0):
self.c = coefficient
self.name = _abbreviation(self.__class__.__name__)
self.last_value = 0
def __call__(self, x: torch.tensor) -> torch.tensor:
tensor = self.loss(x)
self.last_value = tensor.item()
return self.c * tensor
def loss(self, x: torch.tensor):
raise NotImplementedError
def __str__(self):
return f'{_round(self.c * self.last_value)}({_round(self.last_value)})'
def reset(self) -> torch.tensor:
return 0
class LossArray:
def __init__(self):
self.losses = []
self.last_value = 0
def __add__(self, other: InvLoss):
self.losses.append(other)
return self
def __call__(self, x: torch.tensor):
tensor = sum(l(x) for l in self.losses)
self.last_value = tensor.item()
return tensor
def header(self) -> str:
rest = '\t'.join(l.name for l in self.losses)
return f'Loss\t{rest}'
def __str__(self):
rest = '\t'.join(str(l) for l in self.losses)
return f'{_round(self.last_value)}\t{rest}'
def reset(self):
return sum(l.reset() for l in self.losses)
class Normalizer(nn.Module):
def __init__(self, mean, std):
super().__init__()
self.register_buffer('mean', torch.Tensor(mean).reshape((1, -1, 1, 1)))
self.register_buffer('std', torch.Tensor(std).reshape((1, -1, 1, 1)))
def forward(self, t: torch.tensor) -> torch.tensor:
return self.get_normal(t)
def get_normal(self, t: torch.Tensor) -> torch.Tensor:
return (t - self.mean) / self.std
def get_unit(self, t: torch.Tensor) -> torch.Tensor:
return (t * self.std) + self.mean
class MatchBatchNorm(InvLoss):
def __init__(self, bn: BaseFakeBN, coefficient: float = 1.):
super().__init__(coefficient=coefficient)
self.bn = bn
def loss(self, x: torch.tensor) -> torch.tensor:
return self.bn(x)
class TotalVariation(InvLoss):
def loss(self, x: torch.tensor):
return self.tv(x) * np.prod(x.shape[-2:]) / self.size
def __init__(self, p: int = 2, size: int = 224, coefficient: float = 1.):
super().__init__(coefficient)
self.tv = BaseTotalVariation(p)
self.size = size * size
class NormalVariation(InvLoss):
def loss(self, x: torch.tensor):
return self.tv(x) * np.prod(x.shape[-2:]) / self.size
def __init__(self, p: int = 2, size: int = 224, coefficient: float = 1.):
super().__init__(coefficient)
self.tv = BaseNormalVariation(p)
self.size = size * size
class ColorVariation(InvLoss):
def loss(self, x: torch.tensor):
return self.tv(x) * np.prod(x.shape[-2:]) / self.size
def __init__(self, p: int = 2, size: int = 224, coefficient: float = 1.):
super().__init__(coefficient)
self.tv = BaseColorVariation(p)
self.size = size * size
class ColorDistribution(InvLoss):
def loss(self, x: torch.tensor):
return self.color_loss(x)
def __init__(self, normalizer: Normalizer, coefficient: float = 1.):
super().__init__(coefficient)
self.color_loss = AbstractColorDistribution(normalizer)
class BatchAugment(InvLoss):
def loss(self, x: torch.tensor):
if self.aug is not None:
x = self.aug(x)
return self.other(x)
def __init__(self, other: InvLoss, aug: torch.tensor = None):
super().__init__(coefficient=1.0)
self.other = other
self.aug = aug
class NetworkPass(InvLoss):
def __init__(self, model: torch.nn.Module):
super().__init__(coefficient=0.0)
self.model = model
def loss(self, x: torch.tensor):
self.model(x)
return torch.tensor(0)
class CrossEntropyLoss(InvLoss):
def loss(self, x: torch.tensor):
return self.xent(self.model(x), self.label)
def __init__(self, model: torch.nn.Module, label: torch.tensor, coefficient: float = 1.):
super().__init__(coefficient)
self.model = model
self.label = label
self.xent = torch.nn.CrossEntropyLoss()
class ViTFeatHook(InvLoss):
def __init__(self, hook: ViTAbsHookHolder, key: str, coefficient: float = 1.0):
super().__init__(coefficient)
self.hook = hook
self.key = key
def loss(self, x: torch.tensor):
d, o = self.hook(x)
all_feats = d[self.key][0][:, 1:, :].mean(dim=1) # Exclude CLS
mn = min(all_feats.shape)
return - all_feats[:mn, :mn].diag().mean()
class ReconstructionLoss(ViTFeatHook):
def __init__(self, hook: ViTAbsHookHolder, x: torch.tensor, key: str, feat: int = 0,
coefficient: float = 1.0):
super().__init__(hook, key, coefficient)
self.ref = self.hook(x).clone().detach()
self.f = feat
def loss(self, x: torch.tensor):
return (self.hook(x) - self.ref).norm()
class BatchNorm1stLayer(InvLoss):
def loss(self, x: torch.tensor) -> torch.tensor:
return self.hook.get_layer(self.layer)
def reset(self) -> torch.tensor:
return self.hook.reset()
def __init__(self, bn_hook: TimedHookHolder, layer: int = 0, coefficient: float = 1.):
super().__init__(coefficient=coefficient)
self.hook = bn_hook
self.layer = layer
class LayerActivationNorm(InvLoss):
def __init__(self, hook: LayerHook, model: torch.nn.Module, coefficient: float = 1.0):
super().__init__(coefficient)
self.hook, self.model = hook, model
def loss(self, x: torch.tensor) -> torch.tensor:
self.model(x)
return - self.hook()
class ActivationNorm(InvLoss):
def loss(self, x: torch.tensor):
return - self.hook.get_layer(self.layer)
def __init__(self, activation_hook: TimedHookHolder, layer: int, coefficient: float = 1.):
super().__init__(coefficient)
self.hook = activation_hook
self.layer = layer
def reset(self) -> torch.tensor:
return self.hook.reset()
class ViTEnsFeatHook(ViTFeatHook):
def __init__(self, hook: ViTAbsHookHolder, key: str, feat: int = 0, coefficient: float = 1.0):
super().__init__(hook, key, coefficient)
self.f = feat
def loss(self, x: torch.tensor):
d, o = self.hook(x)
all_feats = d[self.key][0][:, 1:, :].mean(dim=1) # Exclude CLS
mn = min(all_feats.shape)
return - all_feats[:mn, self.f].diag().mean()
class ViTHeadHook(ViTEnsFeatHook):
def loss(self, x: torch.tensor):
d, o = self.hook(x)
all_feats = d[self.key][0][:, 1:, :].mean(dim=1) # Exclude CLS and average over words, Result is BSx768
return -all_feats.view(all_feats.shape[0], 12, -1).mean(dim=-1)[:, self.f].mean()
class ViTScoreHook(ViTEnsFeatHook):
def loss(self, x: torch.tensor):
d, o = self.hook(x)
score_head = d[self.key][0][:, self.f, 1:, 1:]
pw = int(np.sqrt(score_head.shape[-1]))
patched = score_head.view(-1, pw, pw, pw, pw)
ret_val = -patched[:, :, :pw // 2, :, pw // 2:].mean()
return ret_val * 10000