Skip to content

Latest commit

 

History

History
executable file
·
174 lines (146 loc) · 6.22 KB

File metadata and controls

executable file
·
174 lines (146 loc) · 6.22 KB

Using GPUs

Supported devices

On a typical system, there are multiple computing devices. In TensorFlow, the supported device types are CPU and GPU. They are represented as strings. For example:

  • "/cpu:0": The CPU of your machine.
  • "/gpu:0": The GPU of your machine, if you have one.
  • "/gpu:1": The second GPU of your machine, etc.

If a TensorFlow operation has both CPU and GPU implementations, the GPU devices will be given priority when the operation is assigned to a device. For example, matmul has both CPU and GPU kernels. On a system with devices cpu:0 and gpu:0, gpu:0 will be selected to run matmul.

Logging Device placement

To find out which devices your operations and tensors are assigned to, create the session with log_device_placement configuration option set to True.

# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print sess.run(c)

You should see the following output:

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/gpu:0
a: /job:localhost/replica:0/task:0/gpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
[[ 22.  28.]
 [ 49.  64.]]

Manual device placement

If you would like a particular operation to run on a device of your choice instead of what's automatically selected for you, you can use with tf.device to create a device context such that all the operations within that context will have the same device assignment.

# Creates a graph.
with tf.device('/cpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print sess.run(c)

You will see that now a and b are assigned to cpu:0.

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/cpu:0
a: /job:localhost/replica:0/task:0/cpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
[[ 22.  28.]
 [ 49.  64.]]

Using a single GPU on a multi-GPU system

If you have more than one GPU in your system, the GPU with the lowest ID will be selected by default. If you would like to run on a different GPU, you will need to specify the preference explicitly:

# Creates a graph.
with tf.device('/gpu:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print sess.run(c)

If the device you have specified does not exist, you will get InvalidArgumentError:

InvalidArgumentError: Invalid argument: Cannot assign a device to node 'b':
Could not satisfy explicit device specification '/gpu:2'
   [[Node: b = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [3,2]
   values: 1 2 3...>, _device="/gpu:2"]()]]

If you would like TensorFlow to automatically choose an existing and supported device to run the operations in case the specified one doesn't exist, you can set allow_soft_placement to True in the configuration option when creating the session.

# Creates a graph.
with tf.device('/gpu:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)
# Creates a session with allow_soft_placement and log_device_placement set
# to True.
sess = tf.Session(config=tf.ConfigProto(
      allow_soft_placement=True, log_device_placement=True))
# Runs the op.
print sess.run(c)

Using multiple GPUs

If you would like to run TensorFlow on multiple GPUs, you can construct your model in a multi-tower fashion where each tower is assigned to a different GPU. For example:

# Creates a graph.
c = []
for d in ['/gpu:2', '/gpu:3']:
  with tf.device(d):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
    c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):
  sum = tf.add_n(c)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print sess.run(sum)

You will see the following output.

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K20m, pci bus
id: 0000:02:00.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: Tesla K20m, pci bus
id: 0000:03:00.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: Tesla K20m, pci bus
id: 0000:83:00.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: Tesla K20m, pci bus
id: 0000:84:00.0
Const_3: /job:localhost/replica:0/task:0/gpu:3
Const_2: /job:localhost/replica:0/task:0/gpu:3
MatMul_1: /job:localhost/replica:0/task:0/gpu:3
Const_1: /job:localhost/replica:0/task:0/gpu:2
Const: /job:localhost/replica:0/task:0/gpu:2
MatMul: /job:localhost/replica:0/task:0/gpu:2
AddN: /job:localhost/replica:0/task:0/cpu:0
[[  44.   56.]
 [  98.  128.]]

The cifar10 tutorial is a good example demonstrating how to do training with multiple GPUs.