-
Notifications
You must be signed in to change notification settings - Fork 7
/
oflow.cpp
370 lines (266 loc) · 11.9 KB
/
oflow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#include <iostream>
#include <string>
#include <vector>
#include <thread>
#include <Eigen/Core>
#include <Eigen/LU>
#include <Eigen/Dense>
#include <opencv2/core/core.hpp> // needed for verbosity >= 3, DISVISUAL
#include <opencv2/highgui/highgui.hpp> // needed for verbosity >= 3, DISVISUAL
#include <opencv2/imgproc/imgproc.hpp> // needed for verbosity >= 3, DISVISUAL
#include <nppi.h>
#include <sys/time.h> // timeof day
#include <stdio.h>
#include "oflow.h"
#include "kernels/resize.h"
#include "kernels/pad.h"
#include "kernels/resizeGrad.h"
#include "kernels/sobel.h"
#include "kernels/pyramid.h"
#include "common/timer.h"
using std::cout;
using std::endl;
using std::vector;
using namespace timer;
namespace OFC {
OFClass::OFClass(opt_params _op, img_params _iparams) {
struct timeval tv_start_all, tv_end_all, tv_start_all_global, tv_end_all_global;
if (op.verbosity > 1) gettimeofday(&tv_start_all_global, nullptr);
// Parse optimization parameters
op = _op;
op.outlier_thresh = (float) op.patch_size / 2;
op.steps = std::max(1, (int) floor(op.patch_size * (1 - op.patch_stride)));
op.n_vals = 3 * pow(op.patch_size, 2);
op.n_scales = op.coarsest_scale - op.finest_scale + 1;
// float norm_outlier2 = pow(op.norm_outlier, 2);
// op.norm_outlier_tmpbsq = (v4sf) {norm_outlier2, norm_outlier2, norm_outlier2, norm_outlier2};
// op.norm_outlier_tmp2bsq = __builtin_ia32_mulps(op.norm_outlier_tmpbsq, op.twos);
// op.norm_outlier_tmp4bsq = __builtin_ia32_mulps(op.norm_outlier_tmpbsq, op.fours);
op.dp_thresh = 0.05 * 0.05;
op.dr_thresh = 0.95;
op.res_thresh = 0.0;
// Initialize cuBLAS
cublasStatus_t stat = cublasCreate(&op.cublasHandle);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS initialization failed\n");
exit(-1);
}
// Allocate scale pyramides
I0s = new float*[op.coarsest_scale+1];
I1s = new float*[op.coarsest_scale+1];
I0xs = new float*[op.coarsest_scale+1];
I0ys = new float*[op.coarsest_scale+1];
I1xs = new float*[op.coarsest_scale+1];
I1ys = new float*[op.coarsest_scale+1];
// Create grids on each scale
if (op.verbosity>1) gettimeofday(&tv_start_all, nullptr);
int elemSize = 3 * sizeof(float);
grid.resize(op.n_scales);
flow.resize(op.n_scales);
iparams.resize(op.n_scales);
for (int sl = op.coarsest_scale; sl >= 0; --sl) {
int i = sl - op.finest_scale;
float scale_fact = pow(2, -sl); // scaling factor at current scale
if (i >= 0) {
iparams[i].scale_fact = scale_fact;
iparams[i].height = _iparams.height * scale_fact;
iparams[i].width = _iparams.width * scale_fact;
iparams[i].padding = _iparams.padding;
iparams[i].l_bound = -(float) op.patch_size / 2;
iparams[i].u_bound_width = (float) (iparams[i].width + op.patch_size / 2 - 2);
iparams[i].u_bound_height = (float) (iparams[i].height + op.patch_size / 2 - 2);
iparams[i].width_pad = iparams[i].width + 2 * _iparams.padding;
iparams[i].height_pad = iparams[i].height + 2 * _iparams.padding;
iparams[i].curr_lvl = sl;
// flow[i] = new float[2 * iparams[i].width * iparams[i].height];
checkCudaErrors(
cudaHostAlloc((void**) &(flow[i]),
2 * iparams[i].width * iparams[i].height * sizeof(float), cudaHostAllocMapped) );
grid[i] = new OFC::PatGridClass(&(iparams[i]), &op);
}
int padWidth = _iparams.width * scale_fact + 2 * _iparams.padding;
int padHeight = _iparams.height * scale_fact + 2 * _iparams.padding;
checkCudaErrors( cudaMalloc((void**) &I0s[sl], padWidth * padHeight * elemSize) );
checkCudaErrors( cudaMalloc((void**) &I0xs[sl], padWidth * padHeight * elemSize) );
checkCudaErrors( cudaMalloc((void**) &I0ys[sl], padWidth * padHeight * elemSize) );
checkCudaErrors( cudaMalloc((void**) &I1s[sl], padWidth * padHeight * elemSize) );
checkCudaErrors( cudaMalloc((void**) &I1xs[sl], padWidth * padHeight * elemSize) );
checkCudaErrors( cudaMalloc((void**) &I1ys[sl], padWidth * padHeight * elemSize) );
}
// Timing, Grid memory allocation
if (op.verbosity>1) {
gettimeofday(&tv_end_all, nullptr);
double tt_gridconst = (tv_end_all.tv_sec-tv_start_all.tv_sec)*1000.0f + (tv_end_all.tv_usec-tv_start_all.tv_usec)/1000.0f;
printf("TIME (Grid Memo. Alloc. ) (ms): %3g\n", tt_gridconst);
}
const Npp32f pSrcKernel[3] = { 1, 0, -1 };
Npp32s nMaskSize = 3;
checkCudaErrors( cudaMalloc((void**) &pDeviceIx, _iparams.width * _iparams.height * elemSize) );
checkCudaErrors( cudaMalloc((void**) &pDeviceIy, _iparams.width * _iparams.height * elemSize) );
checkCudaErrors( cudaMalloc((void**) &pDeviceTmp, _iparams.width * _iparams.height * elemSize) );
checkCudaErrors( cudaMalloc((void**) &pDeviceWew, nMaskSize * sizeof(Npp32f)) );
checkCudaErrors(
cudaMemcpy(pDeviceWew, pSrcKernel, nMaskSize * sizeof(Npp32f), cudaMemcpyHostToDevice) );
// Timing, Setup
if (op.verbosity>1) {
gettimeofday(&tv_end_all_global, nullptr);
double tt = (tv_end_all_global.tv_sec-tv_start_all_global.tv_sec)*1000.0f + (tv_end_all_global.tv_usec-tv_start_all_global.tv_usec)/1000.0f;
printf("TIME (Setup) (ms): %3g\n", tt);
}
}
OFClass::~OFClass() {
cublasDestroy(op.cublasHandle);
for (int sl = op.coarsest_scale; sl >= op.finest_scale; --sl) {
cudaFree(flow[sl - op.finest_scale]);
delete grid[sl - op.finest_scale];
}
for (int i = 0; i <= op.coarsest_scale; i++) {
cudaFree(I0s[i]);
cudaFree(I0xs[i]);
cudaFree(I0ys[i]);
cudaFree(I1s[i]);
cudaFree(I1xs[i]);
cudaFree(I1ys[i]);
}
delete I0s;
delete I1s;
delete I0xs;
delete I0ys;
delete I1xs;
delete I1ys;
cudaFree(pDeviceIx);
cudaFree(pDeviceIy);
cudaFree(pDeviceTmp);
cudaFree(pDeviceWew);
}
void OFClass::ConstructImgPyramids(img_params iparams) {
// Timing structures
struct timeval start_time, end_time;
gettimeofday(&start_time, NULL);
// Construct image and gradient pyramides
cu::constructImgPyramids(I0, I0s, I0xs, I0ys,
pDeviceIx, pDeviceIy, pDeviceTmp, pDeviceWew,
iparams.width, iparams.height,
op.patch_size, op.coarsest_scale + 1);
cu::constructImgPyramids(I1, I1s, I1xs, I1ys,
pDeviceIx, pDeviceIy, pDeviceTmp, pDeviceWew,
iparams.width, iparams.height,
op.patch_size, op.coarsest_scale + 1);
// Timing, image gradients and pyramid
if (op.verbosity > 1) {
gettimeofday(&end_time, NULL);
double tt = (end_time.tv_sec-start_time.tv_sec)*1000.0f + (end_time.tv_usec-start_time.tv_usec)/1000.0f;
printf("TIME (Pyramids+Gradients) (ms): %3g\n", tt);
}
}
void OFClass::calc(Npp32f* _I0, Npp32f* _I1, img_params _iparams, const float * initflow, float * outflow) {
I0 = _I0;
I1 = _I1;
std::cout << "I0 " << _iparams.height << "x" << _iparams.width << std::endl;
printf("Constructing pyramids\n");
ConstructImgPyramids(_iparams);
if (op.verbosity > 1) cout << ", cflow " << endl;
// Variables for algorithm timings
struct timeval tv_start_all, tv_end_all, tv_start_all_global, tv_end_all_global;
if (op.verbosity > 0) gettimeofday(&tv_start_all_global, nullptr);
// ... per each scale
double tt_patconstr[op.n_scales], tt_patinit[op.n_scales], tt_patoptim[op.n_scales],
tt_compflow[op.n_scales], tt_tvopt[op.n_scales], tt_all[op.n_scales];
for (int sl = op.coarsest_scale; sl >= op.finest_scale; --sl) {
tt_patconstr[sl - op.finest_scale] = 0;
tt_patinit[sl - op.finest_scale] = 0;
tt_patoptim[sl - op.finest_scale] = 0;
tt_compflow[sl - op.finest_scale] = 0;
tt_tvopt[sl - op.finest_scale] = 0;
tt_all[sl - op.finest_scale] = 0;
}
// Main loop; Operate over scales, coarse-to-fine
for (int sl = op.coarsest_scale; sl >= op.finest_scale; --sl) {
int ii = sl - op.finest_scale;
if (op.verbosity > 1) gettimeofday(&tv_start_all, nullptr);
// Initialize grid (Step 1 in Algorithm 1 of paper)
grid[ii]->InitializeGrid(I0s[sl], I0xs[sl], I0ys[sl]);
grid[ii]->SetTargetImage(I1s[sl]);
// Timing, Grid construction
if (op.verbosity > 1) {
gettimeofday(&tv_end_all, nullptr);
tt_patconstr[ii] = (tv_end_all.tv_sec-tv_start_all.tv_sec)*1000.0f + (tv_end_all.tv_usec-tv_start_all.tv_usec)/1000.0f;
tt_all[ii] += tt_patconstr[ii];
gettimeofday(&tv_start_all, nullptr);
}
// Initialization from previous scale, or to zero at first iteration. (Step 2 in Algorithm 1 of paper)
if (sl < op.coarsest_scale) {
// initialize from flow at previous coarser scale
grid[ii]->InitializeFromCoarserOF(flow[ii+1]);
} else if (sl == op.coarsest_scale && initflow != nullptr) {
// initialization given input flow
grid[ii]->InitializeFromCoarserOF(initflow);
}
// Timing, Grid initialization
if (op.verbosity > 1) {
gettimeofday(&tv_end_all, nullptr);
tt_patinit[ii] = (tv_end_all.tv_sec-tv_start_all.tv_sec)*1000.0f + (tv_end_all.tv_usec-tv_start_all.tv_usec)/1000.0f;
tt_all[ii] += tt_patinit[ii];
gettimeofday(&tv_start_all, nullptr);
}
// Dense Inverse Search. (Step 3 in Algorithm 1 of paper)
// Parallel over all patches
grid[ii]->Optimize();
// Timing, DIS
if (op.verbosity>1) {
gettimeofday(&tv_end_all, nullptr);
tt_patoptim[ii] = (tv_end_all.tv_sec-tv_start_all.tv_sec)*1000.0f + (tv_end_all.tv_usec-tv_start_all.tv_usec)/1000.0f;
tt_all[ii] += tt_patoptim[ii];
gettimeofday(&tv_start_all, nullptr);
}
// Densification. (Step 4 in Algorithm 1 of paper)
float *out_ptr = flow[ii];
if (sl == op.finest_scale)
out_ptr = outflow;
grid[ii]->AggregateFlowDense(out_ptr);
// Timing, Densification
if (op.verbosity > 1) {
gettimeofday(&tv_end_all, nullptr);
tt_compflow[ii] = (tv_end_all.tv_sec-tv_start_all.tv_sec)*1000.0f + (tv_end_all.tv_usec-tv_start_all.tv_usec)/1000.0f;
tt_all[ii] += tt_compflow[ii];
gettimeofday(&tv_start_all, nullptr);
}
// Variational refinement, (Step 5 in Algorithm 1 of paper)
if (op.use_var_ref) {
// if (false) {
float* I0H, * I1H;
int elemSize = 3 * sizeof(float);
int size = iparams[ii].width_pad * iparams[ii].height_pad * elemSize;
I0H = (float*) malloc(size);
I1H = (float*) malloc(size);
checkCudaErrors(
cudaMemcpy(I0H, I0s[sl], size, cudaMemcpyDeviceToHost) );
checkCudaErrors(
cudaMemcpy(I1H, I1s[sl], size, cudaMemcpyDeviceToHost) );
OFC::VarRefClass var_ref(I0H, I1H, &(iparams[ii]), &op, out_ptr);
delete I0H;
delete I1H;
}
// Timing, Variational Refinement
if (op.verbosity > 1)
{
gettimeofday(&tv_end_all, nullptr);
tt_tvopt[ii] = (tv_end_all.tv_sec-tv_start_all.tv_sec)*1000.0f + (tv_end_all.tv_usec-tv_start_all.tv_usec)/1000.0f;
tt_all[ii] += tt_tvopt[ii];
printf("TIME (Sc: %i, #p:%6i, pconst, pinit, poptim, cflow, tvopt, total): %8.2f %8.2f %8.2f %8.2f %8.2f -> %8.2f ms.\n", sl, grid[ii]->GetNumPatches(), tt_patconstr[ii], tt_patinit[ii], tt_patoptim[ii], tt_compflow[ii], tt_tvopt[ii], tt_all[ii]);
}
}
// Timing, total algorithm run-time
if (op.verbosity > 0) {
gettimeofday(&tv_end_all_global, nullptr);
double tt = (tv_end_all_global.tv_sec-tv_start_all_global.tv_sec)*1000.0f + (tv_end_all_global.tv_usec-tv_start_all_global.tv_usec)/1000.0f;
printf("TIME (O.Flow Run-Time ) (ms): %3g\n", tt);
}
// Detailed timing reports
if (op.verbosity > 1) {
for (auto &g : grid) {
g->printTimings();
}
}
}
}