这是 linux 内核揭秘 这本书最新章节的第一部分。我们已经在这本书前面的章节中走过了漫长的道路。从内核初始化的第一步开始,结束于第一个 init
程序的启动。我们见证了一系列与各种内核子系统相关的初始化步骤,但是我们并没有深入这些子系统。在这一章中,我们将会试着去了解这些内核子系统是如何工作和实现的。就像你在这章标题中看到的,第一个子系统是中断(interrupts)。
我们已经在这本书的很多地方听到过 中断(interrupts)
这个词,也看到过很多关于中断的例子。在这一章中我们将会从下面的主题开始:
- 什么是
中断(interrupts)
? - 什么是
中断处理(interrupt handlers)
?
我们将会继续深入探讨 中断
的细节和 Linux 内核如何处理这些中断。
所以,首先什么是中断?中断就是当软件或者硬件需要使用 CPU 时引发的 事件(event)
。比如,当我们在键盘上按下一个键的时候,我们下一步期望做什么?操作系统和电脑应该怎么做?做一个简单的假设,每一个物理硬件都有一根连接 CPU 的中断线,设备可以通过它对 CPU 发起中断信号。但是中断信号并不是直接发送给 CPU。在老机器上中断信号发送给 PIC ,它是一个顺序处理各种设备的各种中断请求的芯片。在新机器上,则是高级程序中断控制器(Advanced Programmable Interrupt Controller)做这件事情,即我们熟知的 APIC
。一个 APIC 包括两个独立的设备:
Local APIC
I/O APIC
第一个设备 - Local APIC
存在于每个CPU核心中,Local APIC 负责处理特定于 CPU 的中断配置。Local APIC 常被用于管理来自 APIC 时钟(APIC-timer)、热敏元件和其他与 I/O 设备连接的设备的中断。
第二个设备 - I/O APIC
提供了多核处理器的中断管理。它被用来在所有的 CPU 核心中分发外部中断。更多关于 local 和 I/O APIC 的内容将会在这一节的下面讲到。就如你所知道的,中断可以在任何时间发生。当一个中断发生时,操作系统必须立刻处理它。但是 处理一个中断
是什么意思呢?当一个中断发生时,操作系统必须确保下面的步骤顺序:
- 内核必须暂停执行当前进程(取代当前的任务);
- 内核必须搜索中断处理程序并且转交控制权(执行中断处理程序);
- 中断处理程序结束之后,被中断的进程能够恢复执行。
当然,在这个中断处理程序中会涉及到很多错综复杂的过程。但是上面 3 条是这个程序的基本骨架。
每个中断处理程序的地址都保存在一个特殊的位置,这个位置被称为 中断描述符表(Interrupt Descriptor Table)
或者 IDT
。处理器使用一个唯一的数字来识别中断和异常的类型,这个数字被称为 中断标识码(vector number)
。一个中断标识码就是一个 IDT
的标识。中断标识码范围是有限的,从 0
到 255
。你可以在 Linux 内核源码中找到下面的中断标识码范围检查代码:
BUG_ON((unsigned)n > 0xFF);
你可以在 Linux 内核源码中关于中断设置的地方找到这个定义(例如:set_intr_gate
, void set_system_intr_gate
在 arch/x86/include/asm/desc.h中)。从 0
到 31
的 32 个中断标识码被处理器保留,用作处理架构定义的异常和中断。你可以在 Linux 内核初始化程序的第二部分 - 早期中断和异常处理中找到这个表和关于这些中断标识码的描述。从 32
到 255
的中断标识码设计为用户定义中断并且不被系统保留。这些中断通常分配给外部 I/O 设备,使这些设备可以发送中断给处理器。
现在,我们来讨论中断的类型。笼统地来讲,我们可以把中断分为两个主要类型:
- 外部或者硬件引起的中断;
- 软件引起的中断。
第一种类型 - 外部中断,由 Local APIC
或者与 Local APIC
连接的处理器针脚接收。第二种类型 - 软件引起的中断,由处理器自身的特殊情况引起(有时使用特殊架构的指令)。一个常见的关于特殊情况的例子就是 除零
。另一个例子就是使用 系统调用(syscall)
退出程序。
就如之前提到过的,中断可以在任何时间因为超出代码和 CPU 控制的原因而发生。另一方面,异常和程序执行 同步(synchronous)
,并且可以被分为 3 类:
故障(Faults)
陷入(Traps)
终止(Aborts)
故障
是在执行一个“不完善的”指令(可以在之后被修正)之前被报告的异常。如果发生了,它允许被中断的程序继续执行。
接下来的 陷入
是一个在执行了 陷入
指令后立刻被报告的异常。陷入同样允许被中断的程序继续执行,就像 故障
一样。
最后的 终止
是一个从不报告引起异常的精确指令的异常,并且不允许被中断的程序继续执行。
我们已经从前面的部分知道,中断可以分为 可屏蔽的(maskable)
和 不可屏蔽的(non-maskable)
。可屏蔽的中断可以被阻塞,使用 x86_64
的指令 - sti
和 cli
。我们可以在 Linux 内核代码中找到他们:
static inline void native_irq_disable(void)
{
asm volatile("cli": : :"memory");
}
and
static inline void native_irq_enable(void)
{
asm volatile("sti": : :"memory");
}
这两个指令修改了在中断寄存器中的 IF
标识位。 sti
指令设置 IF
标识,cli
指令清除这个标识。不可屏蔽的中断总是被报告。通常,任何硬件上的失败都映射为不可屏蔽中断。
如果多个异常或者中断同时发生,处理器以事先设定好的中断优先级处理他们。我们可以定义下面表中的从最低到最高的优先级:
+----------------------------------------------------------------+
| | |
| Priority | Description |
| | |
+--------------+-------------------------------------------------+
| | Hardware Reset and Machine Checks |
| 1 | - RESET |
| | - Machine Check |
+--------------+-------------------------------------------------+
| | Trap on Task Switch |
| 2 | - T flag in TSS is set |
| | |
+--------------+-------------------------------------------------+
| | External Hardware Interventions |
| | - FLUSH |
| 3 | - STOPCLK |
| | - SMI |
| | - INIT |
+--------------+-------------------------------------------------+
| | Traps on the Previous Instruction |
| 4 | - Breakpoints |
| | - Debug Trap Exceptions |
+--------------+-------------------------------------------------+
| 5 | Nonmaskable Interrupts |
+--------------+-------------------------------------------------+
| 6 | Maskable Hardware Interrupts |
+--------------+-------------------------------------------------+
| 7 | Code Breakpoint Fault |
+--------------+-------------------------------------------------+
| 8 | Faults from Fetching Next Instruction |
| | Code-Segment Limit Violation |
| | Code Page Fault |
+--------------+-------------------------------------------------+
| | Faults from Decoding the Next Instruction |
| | Instruction length > 15 bytes |
| 9 | Invalid Opcode |
| | Coprocessor Not Available |
| | |
+--------------+-------------------------------------------------+
| 10 | Faults on Executing an Instruction |
| | Overflow |
| | Bound error |
| | Invalid TSS |
| | Segment Not Present |
| | Stack fault |
| | General Protection |
| | Data Page Fault |
| | Alignment Check |
| | x87 FPU Floating-point exception |
| | SIMD floating-point exception |
| | Virtualization exception |
+--------------+-------------------------------------------------+
现在我们了解了一些关于各种类型的中断和异常的内容,是时候转到更实用的部分了。我们从 中断描述符表(IDT)
开始。就如之前所提到的,IDT
保存了中断和异常处理程序的入口指针。IDT
是一个类似于 全局描述符表(Global Descriptor Table)
的结构,我们在内核启动程序的第二部分已经介绍过。但是他们确实有一些不同,IDT
的表项被称为 门(gates)
,而不是 描述符(descriptors)
。它可以包含下面的一种:
- 中断门(Interrupt gates)
- 任务门(Task gates)
- 陷阱门(Trap gates)
在 x86
架构中,只有 long mode 中断门和陷阱门可以在 x86_64
中引用。就像 全局描述符表
,中断描述符表
在 x86
上是一个 8 字节数组门,而在 x86_64
上是一个 16 字节数组门。让我们回忆在内核启动程序的第二部分,全局描述符表
必须包含 NULL
描述符作为它的第一个元素。与 全局描述符表
不一样的是,中断描述符表
的第一个元素可以是一个门。它并不是强制要求的。比如,你可能还记得我们只是在早期的章节中过渡到保护模式时用 NULL
门加载过中断描述符表:
/*
* Set up the IDT
*/
static void setup_idt(void)
{
static const struct gdt_ptr null_idt = {0, 0};
asm volatile("lidtl %0" : : "m" (null_idt));
}
在 arch/x86/boot/pm.c中。中断描述符表
可以在线性地址空间和基址的任何地方被加载,只要在 x86
上以 8 字节对齐,在 x86_64
上以 16 字节对齐。IDT
的基址存储在一个特殊的寄存器 - IDTR。在 x86
上有两个指令 - 协调工作来修改 IDTR
寄存器:
LIDT
SIDT
第一个指令 LIDT
用来加载 IDT
的基址,即在 IDTR
的指定操作数。第二个指令 SIDT
用来在指定操作数中读取和存储 IDTR
的内容。在 x86
上 IDTR
寄存器是 48 位,包含了下面的信息:
+-----------------------------------+----------------------+
| | |
| Base address of the IDT | Limit of the IDT |
| | |
+-----------------------------------+----------------------+
47 16 15 0
让我们看看 setup_idt
的实现,我们准备了一个 null_idt
,并且使用 lidt
指令把它加载到 IDTR
寄存器。注意,null_idt
是 gdt_ptr
类型,后者定义如下:
struct gdt_ptr {
u16 len;
u32 ptr;
} __attribute__((packed));
这里我们可以看看 IDTR
结构的定义,就像我们在示意图中看到的一样,由 2 字节和 4 字节(共 48 位)的两个域组成。现在,让我们看看 IDT
入口结构体,它是一个在 x86
中被称为门的 16 字节数组。它拥有下面的结构:
127 96
+-------------------------------------------------------------------------------+
| |
| Reserved |
| |
+--------------------------------------------------------------------------------
95 64
+-------------------------------------------------------------------------------+
| |
| Offset 63..32 |
| |
+-------------------------------------------------------------------------------+
63 48 47 46 44 42 39 34 32
+-------------------------------------------------------------------------------+
| | | D | | | | | | |
| Offset 31..16 | P | P | 0 |Type |0 0 0 | 0 | 0 | IST |
| | | L | | | | | | |
-------------------------------------------------------------------------------+
31 16 15 0
+-------------------------------------------------------------------------------+
| | |
| Segment Selector | Offset 15..0 |
| | |
+-------------------------------------------------------------------------------+
为了把索引格式化成 IDT 的格式,处理器把异常和中断向量分为 16 个级别。处理器处理异常和中断的发生就像它看到 call
指令时处理一个程序调用一样。处理器使用中断或异常的唯一的数字或 中断标识码
作为索引来寻找对应的 中断描述符表
的条目。现在让我们更近距离地看看 IDT
条目。
就像我们所看到的一样,在表中的 IDT
条目由下面的域组成:
0-15
bits - 段选择器偏移,处理器用它作为中断处理程序的入口指针基址;16-31
bits - 段选择器基址,包含中断处理程序入口指针;IST
- 在x86_64
上的一个新的机制,下面我们会介绍它;DPL
- 描述符特权级;P
- 段存在标志;48-63
bits - 中断处理程序基址的第二部分;64-95
bits - 中断处理程序基址的第三部分;96-127
bits - CPU 保留位.
Type
域描述了 IDT
条目的类型。有三种不同的中断处理程序:
- 中断门(Interrupt gate)
- 陷入门(Trap gate)
- 任务门(Task gate)
IST
或者说是 Interrupt Stack Table
是 x86_64
中的新机制,它用来代替传统的栈切换机制。之前的 x86
架构提供的机制可以在响应中断时自动切换栈帧。IST
是 x86
栈切换模式的一个修改版,在它使能之后可以无条件地切换栈,并且可以被任何与确定中断(我们将在下面介绍它)关联的 IDT
条目中的中断使能。从这里可以看出,IST
并不是所有的中断必须的,一些中断可以继续使用传统的栈切换模式。IST
机制在任务状态段(Task State Segment)或者 TSS
中提供了 7 个 IST
指针。TSS
是一个包含进程信息的特殊结构,用来在执行中断或者处理 Linux 内核异常的时候做栈切换。每一个指针都被 IDT
中的中断门引用。
中断描述符表
使用 gate_desc
的数组描述:
extern gate_desc idt_table[];
gate_desc
定义如下:
#ifdef CONFIG_X86_64
...
...
...
typedef struct gate_struct64 gate_desc;
...
...
...
#endif
gate_struct64
定义如下:
struct gate_struct64 {
u16 offset_low;
u16 segment;
unsigned ist : 3, zero0 : 5, type : 5, dpl : 2, p : 1;
u16 offset_middle;
u32 offset_high;
u32 zero1;
} __attribute__((packed));
在 x86_64
架构中,每一个活动的线程在 Linux 内核中都有一个很大的栈。这个栈的大小由 THREAD_SIZE
定义,而且与下面的定义相等:
#define PAGE_SHIFT 12
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
...
...
...
#define THREAD_SIZE_ORDER (2 + KASAN_STACK_ORDER)
#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)
PAGE_SIZE
是 4096
字节,THREAD_SIZE_ORDER
的值依赖于 KASAN_STACK_ORDER
。就像我们看到的,KASAN_STACK
依赖于 CONFIG_KASAN
内核配置参数,它定义如下:
#ifdef CONFIG_KASAN
#define KASAN_STACK_ORDER 1
#else
#define KASAN_STACK_ORDER 0
#endif
KASan
是一个运行时内存调试器。所以,如果 CONFIG_KASAN
被禁用,THREAD_SIZE
是 16384
;如果内核配置选项打开,THREAD_SIZE
的值是 32768
。这块栈空间保存着有用的数据,只要线程是活动状态或者僵尸状态。但是当线程在用户空间的时候,这个内核栈是空的,除非 thread_info
结构(关于这个结构的详细信息在 Linux 内核初始程序的第四部分)在这个栈空间的底部。活动的或者僵尸线程并不是在他们栈中的唯一的线程,与每一个 CPU 关联的特殊栈也存在于这个空间。当内核在这个 CPU 上执行代码的时候,这些栈处于活动状态;当在这个 CPU 上执行用户空间代码时,这些栈不包含任何有用的信息。每一个 CPU 也有一个特殊的 per-cpu 栈。首先是给外部中断使用的 中断栈(interrupt stack)
。它的大小定义如下:
#define IRQ_STACK_ORDER (2 + KASAN_STACK_ORDER)
#define IRQ_STACK_SIZE (PAGE_SIZE << IRQ_STACK_ORDER)
或者是 16384
字节。Per-cpu 的中断栈在 x86_64
架构中使用 irq_stack_union
联合描述:
union irq_stack_union {
char irq_stack[IRQ_STACK_SIZE];
struct {
char gs_base[40];
unsigned long stack_canary;
};
};
第一个 irq_stack
域是一个 16KB 的数组。然后你可以看到 irq_stack_union
联合包含了一个结构体,这个结构体有两个域:
gs_base
- 总是指向irqstack
联合底部的gs
寄存器。在x86_64
中, per-cpu(更多关于per-cpu
变量的信息可以阅读特定的章节) 和 stack canary 共享gs
寄存器。所有的 per-cpu 标志初始值为零,并且gs
指向 per-cpu 区域的开始。你已经知道段内存模式已经废除很长时间了,但是我们可以使用特殊模块寄存器(Model specific registers)给这两个段寄存器 -fs
和gs
设置基址,并且这些寄存器仍然可以被用作地址寄存器。如果你记得 Linux 内核初始程序的第一部分,你会记起我们设置了gs
寄存器:
movl $MSR_GS_BASE,%ecx
movl initial_gs(%rip),%eax
movl initial_gs+4(%rip),%edx
wrmsr
initial_gs
指向 irq_stack_union
:
GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irq_stack_union)
stack_canary
- Stack canary 对于中断栈来说是一个用来验证栈是否已经被修改的栈保护者(stack protector)
。gs_base
是一个 40 字节的数组,GCC
要求 stack canary 在被修正过的偏移量上,并且gs
的值在x86_64
架构上必须是40
,在x86
架构上必须是20
。
irq_stack_union
是 percpu
的第一个数据, 我们可以在 System.map
中看到它:
0000000000000000 D __per_cpu_start
0000000000000000 D irq_stack_union
0000000000004000 d exception_stacks
0000000000009000 D gdt_page
...
...
...
我们可以看到它在代码中的定义:
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
现在,是时候来看 irq_stack_union
的初始化过程了。除了 irq_stack_union
的定义,我们可以在arch/x86/include/asm/processor.h中查看下面的 per-cpu 变量
DECLARE_PER_CPU(char *, irq_stack_ptr);
DECLARE_PER_CPU(unsigned int, irq_count);
第一个就是 irq_stack_ptr
。从这个变量的名字中可以知道,它显然是一个指向这个栈顶的指针。第二个 irq_count
用来检查 CPU 是否已经在中断栈。irq_stack_ptr
的初始化在arch/x86/kernel/setup_percpu.c的 setup_per_cpu_areas
函数中:
void __init setup_per_cpu_areas(void)
{
...
...
#ifdef CONFIG_X86_64
for_each_possible_cpu(cpu) {
...
...
...
per_cpu(irq_stack_ptr, cpu) =
per_cpu(irq_stack_union.irq_stack, cpu) +
IRQ_STACK_SIZE - 64;
...
...
...
#endif
...
...
}
现在,我们一个一个查看所有 CPU,并且设置 irq_stack_ptr
。事实证明它等于中断栈的顶减去 64
。为什么是 64
?TODO [arch/x86/kernel/cpu/common.c] 代码如下:
void load_percpu_segment(int cpu)
{
...
...
...
__loadsegment_simple(gs, 0);
wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
...
load_stack_canary_segment();
}
正如我们所知的一样,gs
寄存器指向中断栈的栈底:
movl $MSR_GS_BASE,%ecx
movl initial_gs(%rip),%eax
movl initial_gs+4(%rip),%edx
wrmsr
SYM_DATA(initial_gs,
.quad INIT_PER_CPU_VAR(fixed_percpu_data))
现在我们可以看到 wrmsr
指令,这个指令从 edx:eax
加载数据到 被 ecx
指向的MSR寄存器。在这里MSR寄存器是 MSR_GS_BASE
,它保存了被 gs
寄存器指向的内存段的基址。edx:eax
指向 initial_gs
,的地址,它就是 fixed_percpu_data
的基址。
我们还知道,x86_64
有一个叫 中断栈表(Interrupt Stack Table)
或者 IST
的组件,当发生不可屏蔽中断、双重错误等等的时候,这个组件提供了切换到新栈的功能。这可以到达7个 IST
per-cpu 入口。其中一些如下;
DOUBLEFAULT_STACK
NMI_STACK
DEBUG_STACK
MCE_STACK
或者
#define DOUBLEFAULT_STACK 1
#define NMI_STACK 2
#define DEBUG_STACK 3
#define MCE_STACK 4
所有被 IST
切换到新栈的中断门描述符都由 set_intr_gate_ist
函数初始化。例如:
static const __initconst struct idt_data def_idts[] = {
...
INTG(X86_TRAP_NMI, nmi),
...
INTG(X86_TRAP_DF, double_fault),
其中 &nmi
和 &double_fault
在以下位置创建入口点:
idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1
...
...
...
SYM_CODE_START(nmi)
...
...
...
SYM_CODE_END(nmi)
SYM_CODE_END(nmi)
在以下位置给出了中断处理程序的声明 arch/x86/include/asm/traps.h:
asmlinkage void nmi(void);
asmlinkage void double_fault(void);
当一个中断或者异常发生时,新的 ss
选择器被强制置为 NULL
,并且 ss
选择器的 rpl
域被设置为新的 cpl
。旧的 ss
、rsp
、寄存器标志、cs
、rip
被压入新栈。在 64 位模型下,中断栈帧大小固定为 8 字节,所以我们可以得到下面的栈:
+---------------+
| |
| SS | 40
| RSP | 32
| RFLAGS | 24
| CS | 16
| RIP | 8
| Error code | 0
| |
+---------------+
如果在中断门中 IST
域不是 0
,我们把 IST
读到 rsp
中。如果它关联了一个中断向量错误码,我们再把这个错误码压入栈。如果中断向量没有错误码,就继续并且把虚拟错误码压入栈。我们必须做以上的步骤以确保栈一致性。接下来我们从门描述符中加载段选择器域到 CS 寄存器中,并且通过验证第 21
位的值来验证目标代码是一个 64 位代码段,例如 L
位在 全局描述符表(Global Descriptor Table)
。最后我们从门描述符中加载偏移域到 rip
中,rip
是中断处理函数的入口指针。然后中断函数开始执行,在中断函数执行结束后,它必须通过 iret
指令把控制权交还给被中断进程。iret
指令无条件地弹出栈指针(ss:rsp
)来恢复被中断的进程,并且不会依赖于 cpl
改变。
这就是中断的所有过程。
关于 Linux 内核的中断和中断处理的第一部分至此结束。我们初步了解了一些理论和与中断和异常相关的初始化条件。在下一部分,我会接着深入了解中断和中断处理 - 更深入了解她真实的样子。
如果你有任何问题或建议,请给我发评论或者给我发 Twitter。
请注意英语并不是我的母语,我为任何表达不清楚的地方感到抱歉。如果你发现任何错误请发 PR 到 linux-insides。(译者注:翻译问题请发 PR 到 linux-insides-cn)