-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathgenerate_given_models.py
168 lines (147 loc) · 7.98 KB
/
generate_given_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
'''
This code generates data in various ways given a trained Triple-GAN
Note: Due to the effect of Batch Normalization, it is better to generate batch_size_g (see train file, 200 for cifiar10) samples distributed equally across class in each batch.
'''
import gzip, os, cPickle, time, math, argparse, shutil, sys
import numpy as np
import theano, lasagne
import theano.tensor as T
import lasagne.layers as ll
import lasagne.nonlinearities as ln
from lasagne.layers import dnn
import nn
from lasagne.init import Normal
from theano.sandbox.rng_mrg import MRG_RandomStreams
from layers.merge import ConvConcatLayer, MLPConcatLayer
from layers.deconv import Deconv2DLayer
from components.shortcuts import convlayer, mlplayer
from components.objectives import categorical_crossentropy_ssl_separated, maximum_mean_discripancy, categorical_crossentropy, feature_matching
from utils.create_ssl_data import create_ssl_data, create_ssl_data_subset
from utils.others import get_nonlin_list, get_pad_list, bernoullisample, printarray_2D, array2file_2D
import utils.paramgraphics as paramgraphics
from utils.checkpoints import load_weights
# global
parser = argparse.ArgumentParser()
parser.add_argument("-oldmodel", type=str, default=argparse.SUPPRESS)
parser.add_argument("-dataset", type=str, default='svhn')
args = parser.parse_args()
filename_script=os.path.basename(os.path.realpath(__file__))
outfolder=os.path.join("results-ssl", os.path.splitext(filename_script)[0])
outfolder+='.'
outfolder+=args.dataset
outfolder+='.'
outfolder+=str(int(time.time()))
if not os.path.exists(outfolder):
os.makedirs(outfolder)
shutil.copy(os.path.realpath(__file__), os.path.join(outfolder, filename_script))
# seeds
seed=1234
rng=np.random.RandomState(seed)
theano_rng=MRG_RandomStreams(rng.randint(2 ** 15))
lasagne.random.set_rng(np.random.RandomState(rng.randint(2 ** 15)))
# G
n_z=100
batch_size_g=200
num_x=50000
# data dependent
if args.dataset == 'svhn' or args.dataset == 'cifar10':
gen_final_non=ln.tanh
num_classes=10
dim_input=(32,32)
in_channels=3
colorImg=True
generation_scale=True
elif args.dataset == 'mnist':
gen_final_non=ln.sigmoid
num_classes=10
dim_input=(28,28)
in_channels=1
colorImg=False
generation_scale=False
'''
models
'''
# symbols
sym_y_g = T.ivector()
sym_z_input = T.matrix()
sym_z_rand = theano_rng.uniform(size=(batch_size_g, n_z))
sym_z_shared = T.tile(theano_rng.uniform((batch_size_g/num_classes, n_z)), (num_classes, 1))
# generator y2x: p_g(x, y) = p(y) p_g(x | y) where x = G(z, y), z follows p_g(z)
gen_in_z = ll.InputLayer(shape=(None, n_z))
gen_in_y = ll.InputLayer(shape=(None,))
gen_layers = [gen_in_z]
if args.dataset == 'svhn' or args.dataset == 'cifar10':
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-00'))
gen_layers.append(nn.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=4*4*512, W=Normal(0.05), nonlinearity=nn.relu, name='gen-01'), g=None, name='gen-02'))
gen_layers.append(ll.ReshapeLayer(gen_layers[-1], (-1,512,4,4), name='gen-03'))
gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-10'))
gen_layers.append(nn.batch_norm(nn.Deconv2DLayer(gen_layers[-1], (None,256,8,8), (5,5), W=Normal(0.05), nonlinearity=nn.relu, name='gen-11'), g=None, name='gen-12')) # 4 -> 8
gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-20'))
gen_layers.append(nn.batch_norm(nn.Deconv2DLayer(gen_layers[-1], (None,128,16,16), (5,5), W=Normal(0.05), nonlinearity=nn.relu, name='gen-21'), g=None, name='gen-22')) # 8 -> 16
gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-30'))
gen_layers.append(nn.weight_norm(nn.Deconv2DLayer(gen_layers[-1], (None,3,32,32), (5,5), W=Normal(0.05), nonlinearity=gen_final_non, name='gen-31'), train_g=True, init_stdv=0.1, name='gen-32')) # 16 -> 32
elif args.dataset == 'mnist':
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-1'))
gen_layers.append(ll.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=500, nonlinearity=ln.softplus, name='gen-2'), name='gen-3'))
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-4'))
gen_layers.append(ll.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=500, nonlinearity=ln.softplus, name='gen-5'), name='gen-6'))
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-7'))
gen_layers.append(nn.l2normalize(ll.DenseLayer(gen_layers[-1], num_units=28**2, nonlinearity=gen_final_non, name='gen-8')))
# outputs
gen_out_x = ll.get_output(gen_layers[-1], {gen_in_y:sym_y_g, gen_in_z:sym_z_rand}, deterministic=False)
gen_out_x_shared = ll.get_output(gen_layers[-1], {gen_in_y:sym_y_g, gen_in_z:sym_z_shared}, deterministic=False)
gen_out_x_interpolation = ll.get_output(gen_layers[-1], {gen_in_y:sym_y_g, gen_in_z:sym_z_input}, deterministic=False)
generate = theano.function(inputs=[sym_y_g], outputs=gen_out_x)
generate_shared = theano.function(inputs=[sym_y_g], outputs=gen_out_x_shared)
generate_interpolation = theano.function(inputs=[sym_y_g, sym_z_input], outputs=gen_out_x_interpolation)
'''
Load pretrained model
'''
load_weights(args.oldmodel, gen_layers)
# interpolation on latent space (z) class conditionally
for i in xrange(10):
sample_y = np.int32(np.repeat(np.arange(num_classes), batch_size_g/num_classes))
orignial_z = np.repeat(rng.uniform(size=(num_classes,n_z)), batch_size_g/num_classes, axis=0)
target_z = np.repeat(rng.uniform(size=(num_classes,n_z)), batch_size_g/num_classes, axis=0)
alpha = np.tile(np.arange(batch_size_g/num_classes) * 1.0 / (batch_size_g/num_classes-1), num_classes)
alpha = alpha.reshape(-1,1)
z = np.float32((1-alpha)*orignial_z+alpha*target_z)
x_gen_batch = generate_interpolation(sample_y, z)
x_gen_batch = x_gen_batch.reshape((batch_size_g,-1))
image = paramgraphics.mat_to_img(x_gen_batch.T, dim_input, colorImg=colorImg, tile_shape=(num_classes, 2*num_classes), scale=generation_scale, save_path=os.path.join(outfolder, 'interpolation-'+str(i)+'.png'))
# class conditionally generation with shared z and fixed y
for i in xrange(10):
sample_y = np.int32(np.repeat(np.arange(num_classes), batch_size_g/num_classes))
x_gen_batch = generate_shared(sample_y)
x_gen_batch = x_gen_batch.reshape((batch_size_g,-1))
image = paramgraphics.mat_to_img(x_gen_batch.T, dim_input, colorImg=colorImg, tile_shape=(num_classes, 2*num_classes), scale=generation_scale, save_path=os.path.join(outfolder, 'shared-'+str(i)+'.png'))
# generation with randomly sampled z and y
for i in xrange(10):
sample_y = np.int32(np.repeat(np.arange(num_classes), batch_size_g/num_classes))
inds = np.random.permutation(batch_size_g)
sample_y = sample_y[inds]
x_gen_batch = generate(sample_y)
x_gen_batch = x_gen_batch.reshape((batch_size_g,-1))
image = paramgraphics.mat_to_img(x_gen_batch.T, dim_input, colorImg=colorImg, tile_shape=(num_classes, 2*num_classes), scale=generation_scale, save_path=os.path.join(outfolder, 'random-'+str(i)+'.png'))
if args.dataset != 'cifar10':
exit()
# large number of random generation for inception score computation
x_gen = []
# generation for each class
x_classes = []
for i in xrange(num_classes):
x_classes.append([])
for i in xrange(num_x / batch_size_g):
print i
sample_y = np.int32(np.repeat(np.arange(num_classes), batch_size_g/num_classes))
x_gen_batch = generate(sample_y)
x_gen.append(x_gen_batch)
if i < 5:
for j in xrange(num_classes):
x_classes[j].append(x_gen_batch[j*20:(j+1)*20])
if i == 5:
for ind in xrange(num_classes):
x_classes[ind] = np.concatenate(x_classes[ind], axis=0)
image = paramgraphics.mat_to_img(x_classes[ind].T, dim_input, colorImg=colorImg, tile_shape=(num_classes, num_classes), scale=generation_scale, save_path=os.path.join(outfolder, 'class-'+str(ind)+'.png'))
x_gen=np.concatenate(x_gen, axis=0)
np.save(os.path.join(outfolder,'inception_score'), x_gen)