-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathzca_bn.py
113 lines (102 loc) · 5.26 KB
/
zca_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# ZCA and MeanOnlyBNLayer implementations copied from
# https://github.com/TimSalimans/weight_norm/blob/master/nn.py
#
# Modifications made to MeanOnlyBNLayer:
# - Added configurable momentum.
# - Added 'modify_incoming' flag for weight matrix sharing (not used in this project).
# - Sums and means use float32 datatype.
import numpy as np
import theano as th
import theano.tensor as T
from scipy import linalg
import lasagne
class ZCA(object):
def __init__(self, regularization=1e-5, x=None):
self.regularization = regularization
if x is not None:
self.fit(x)
def fit(self, x):
s = x.shape
x = x.copy().reshape((s[0],np.prod(s[1:])))
m = np.mean(x, axis=0)
x -= m
sigma = np.dot(x.T,x) / x.shape[0]
U, S, V = linalg.svd(sigma)
tmp = np.dot(U, np.diag(1./np.sqrt(S+self.regularization)))
tmp2 = np.dot(U, np.diag(np.sqrt(S+self.regularization)))
self.ZCA_mat = th.shared(np.dot(tmp, U.T).astype(th.config.floatX))
self.inv_ZCA_mat = th.shared(np.dot(tmp2, U.T).astype(th.config.floatX))
self.mean = th.shared(m.astype(th.config.floatX))
def apply(self, x):
s = x.shape
if isinstance(x, np.ndarray):
return np.dot(x.reshape((s[0],np.prod(s[1:]))) - self.mean.get_value(), self.ZCA_mat.get_value()).reshape(s)
elif isinstance(x, T.TensorVariable):
return T.dot(x.flatten(2) - self.mean.dimshuffle('x',0), self.ZCA_mat).reshape(s)
else:
raise NotImplementedError("Whitening only implemented for numpy arrays or Theano TensorVariables")
def invert(self, x):
s = x.shape
if isinstance(x, np.ndarray):
return (np.dot(x.reshape((s[0],np.prod(s[1:]))), self.inv_ZCA_mat.get_value()) + self.mean.get_value()).reshape(s)
elif isinstance(x, T.TensorVariable):
return (T.dot(x.flatten(2), self.inv_ZCA_mat) + self.mean.dimshuffle('x',0)).reshape(s)
else:
raise NotImplementedError("Whitening only implemented for numpy arrays or Theano TensorVariables")
# T.nnet.relu has some issues with very large inputs, this is more stable
def relu(x):
return T.maximum(x, 0)
class MeanOnlyBNLayer(lasagne.layers.Layer):
def __init__(self, incoming, b=lasagne.init.Constant(0.), g=lasagne.init.Constant(1.),
W=lasagne.init.Normal(0.05), nonlinearity=relu, modify_incoming=True, momentum=0.9, **kwargs):
super(MeanOnlyBNLayer, self).__init__(incoming, **kwargs)
self.nonlinearity = nonlinearity
self.momentum = momentum
k = self.input_shape[1]
if b is not None:
self.b = self.add_param(b, (k,), name="b", regularizable=False)
if g is not None:
self.g = self.add_param(g, (k,), name="g")
self.avg_batch_mean = self.add_param(lasagne.init.Constant(0.), (k,), name="avg_batch_mean", regularizable=False, trainable=False)
if len(self.input_shape)==4:
self.axes_to_sum = (0,2,3)
self.dimshuffle_args = ['x',0,'x','x']
else:
self.axes_to_sum = 0
self.dimshuffle_args = ['x',0]
# scale weights in layer below
incoming.W_param = incoming.W
if modify_incoming:
incoming.W_param.set_value(W.sample(incoming.W_param.get_value().shape))
if incoming.W_param.ndim==4:
W_axes_to_sum = (1,2,3)
W_dimshuffle_args = [0,'x','x','x']
else:
W_axes_to_sum = 0
W_dimshuffle_args = ['x',0]
if g is not None:
incoming.W = incoming.W_param * (self.g/T.sqrt(T.sum(T.square(incoming.W_param),axis=W_axes_to_sum,dtype=th.config.floatX, acc_dtype=th.config.floatX))).dimshuffle(*W_dimshuffle_args)
else:
incoming.W = incoming.W_param / T.sqrt(T.sum(T.square(incoming.W_param),axis=W_axes_to_sum,keepdims=True,dtype=th.config.floatX,acc_dtype=th.config.floatX))
def get_output_for(self, input, deterministic=False, init=False, **kwargs):
if deterministic:
activation = input - self.avg_batch_mean.dimshuffle(*self.dimshuffle_args)
else:
m = T.mean(input,axis=self.axes_to_sum,dtype=th.config.floatX,acc_dtype=th.config.floatX)
activation = input - m.dimshuffle(*self.dimshuffle_args)
self.bn_updates = [(self.avg_batch_mean, self.momentum*self.avg_batch_mean + (1.0-self.momentum)*m)]
if init:
stdv = T.sqrt(T.mean(T.square(activation),axis=self.axes_to_sum,dtype=th.config.floatX,acc_dtype=th.config.floatX))
activation /= stdv.dimshuffle(*self.dimshuffle_args)
self.init_updates = [(self.g, self.g/stdv)]
if hasattr(self, 'b'):
activation += self.b.dimshuffle(*self.dimshuffle_args)
return self.nonlinearity(activation)
def mean_only_bn(layer, **kwargs):
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
return MeanOnlyBNLayer(layer, name=layer.name+'_n', nonlinearity=nonlinearity, **kwargs)