forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForcing.pyx
409 lines (331 loc) · 18.2 KB
/
Forcing.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport Grid
cimport ReferenceState
cimport PrognosticVariables
cimport DiagnosticVariables
from thermodynamic_functions cimport cpm_c, pv_c, pd_c, exner_c
from entropies cimport sv_c, sd_c
import numpy as np
import cython
from libc.math cimport fabs
from NetCDFIO cimport NetCDFIO_Stats
cimport ParallelMPI
cdef class Forcing:
def __init__(self, namelist):
casename = namelist['meta']['casename']
if casename == 'SullivanPatton':
self.scheme = ForcingSullivanPatton()
elif casename == 'Bomex':
self.scheme = ForcingBomex()
elif casename == 'Gabls':
self.scheme = ForcingGabls()
elif casename == 'DyCOMS_RF01':
self.scheme = ForcingDyCOMS_RF01()
else:
self.scheme= ForcingNone()
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.scheme.initialize(Gr, NS, Pa)
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV):
self.scheme.update(Gr, Ref, PV, DV)
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.scheme.stats_io(Gr, Ref, PV, DV, NS, Pa)
return
cdef class ForcingNone:
def __init__(self):
pass
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV):
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cdef class ForcingBomex:
def __init__(self):
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.ug = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
self.vg = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
self.dtdt = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
self.dqtdt = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
self.subsidence = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
self.coriolis_param = 0.376e-4 #s^{-1}
cdef:
Py_ssize_t k
with nogil:
for k in xrange(Gr.dims.nlg[2]):
self.ug[k] = -10.0 + (1.8e-3)*Gr.zl_half[k]
#Set large scale cooling
if Gr.zl_half[k] <= 1500.0:
self.dtdt[k] = -2.0/(3600 * 24.0) #K/s
if Gr.zl_half[k] > 1500.0:
self.dtdt[k] = -2.0/(3600 * 24.0) + (Gr.zl_half[k] - 1500.0) * (0.0 - -2.0/(3600 * 24.0)) / (3000.0 - 1500.0)
#Set large scale drying
if Gr.zl_half[k] <= 300.0:
self.dqtdt[k] = -1.2e-8 #kg/(kg * s)
if Gr.zl_half[k] > 300.0 and Gr.zl_half[k] <= 500.0:
self.dqtdt[k] = -1.2e-8 + (Gr.zl_half[k] - 300.0)*(0.0 - -1.2e-8)/(500.0 - 300.0) #kg/(kg * s)
#Set large scale subsidence
if Gr.zl_half[k] <= 1500.0:
self.subsidence[k] = 0.0 + Gr.zl_half[k]*(-0.65/100.0 - 0.0)/(1500.0 - 0.0)
if Gr.zl_half[k] > 1500.0 and Gr.zl_half[k] <= 2100.0:
self.subsidence[k] = -0.65/100 + (Gr.zl_half[k] - 1500.0)* (0.0 - -0.65/100.0)/(2100.0 - 1500.0)
#Initialize Statistical Output
NS.add_profile('s_subsidence_tendency', Gr, Pa)
NS.add_profile('qt_subsidence_tendency', Gr, Pa)
NS.add_profile('u_subsidence_tendency', Gr, Pa)
NS.add_profile('v_subsidence_tendency', Gr, Pa)
NS.add_profile('u_coriolis_tendency', Gr, Pa)
NS.add_profile('v_coriolis_tendency',Gr, Pa)
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV):
cdef:
Py_ssize_t imin = Gr.dims.gw
Py_ssize_t jmin = Gr.dims.gw
Py_ssize_t kmin = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t i,j,k,ishift,jshift,ijk
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
Py_ssize_t s_shift = PV.get_varshift(Gr, 's')
Py_ssize_t qt_shift = PV.get_varshift(Gr, 'qt')
Py_ssize_t t_shift = DV.get_varshift(Gr, 'temperature')
Py_ssize_t ql_shift = DV.get_varshift(Gr,'ql')
double pd
double pv
double qt
double qv
double p0
double rho0
double t
#Apply Coriolis Forcing
coriolis_force(&Gr.dims,&PV.values[u_shift],&PV.values[v_shift],&PV.tendencies[u_shift],
&PV.tendencies[v_shift],&self.ug[0], &self.vg[0],self.coriolis_param, Ref.u0, Ref.v0)
#Apply large scale source terms
with nogil:
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
p0 = Ref.p0_half[k]
rho0 = Ref.rho0_half[k]
qt = PV.values[qt_shift + ijk]
qv = qt - DV.values[ql_shift + ijk]
pd = pd_c(p0,qt,qv)
pv = pv_c(p0,qt,qv)
t = DV.values[t_shift + ijk]
PV.tendencies[s_shift + ijk] += (cpm_c(qt)
* self.dtdt[k] * exner_c(p0) * rho0)/t
PV.tendencies[s_shift + ijk] += (sv_c(pv,t) - sd_c(pd,t))*self.dqtdt[k]
PV.tendencies[qt_shift + ijk] += self.dqtdt[k]
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[s_shift],&PV.tendencies[s_shift])
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[qt_shift],&PV.tendencies[qt_shift])
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[u_shift],&PV.tendencies[u_shift])
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[v_shift],&PV.tendencies[v_shift])
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
Py_ssize_t s_shift = PV.get_varshift(Gr, 's')
Py_ssize_t qt_shift = PV.get_varshift(Gr, 'qt')
double [:] tmp_tendency = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
double [:] tmp_tendency_2 = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
double [:] mean_tendency = np.empty((Gr.dims.nlg[2],),dtype=np.double,order='c')
double [:] mean_tendency_2 = np.zeros((Gr.dims.nlg[2]),dtype=np.double,order='c')
#Output subsidence tendencies
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[s_shift],
&tmp_tendency[0])
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency[0])
NS.write_profile('s_subsidence_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
tmp_tendency[:] = 0.0
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[qt_shift],
&tmp_tendency[0])
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency[0])
NS.write_profile('qt_subsidence_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
tmp_tendency[:] = 0.0
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[u_shift],
&tmp_tendency[0])
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency[0])
NS.write_profile('u_subsidence_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
tmp_tendency[:] = 0.0
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.subsidence[0],&PV.values[v_shift],
&tmp_tendency[0])
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency[0])
NS.write_profile('v_subsidence_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
#Output Coriolis tendencies
tmp_tendency[:] = 0.0
coriolis_force(&Gr.dims,&PV.values[u_shift],&PV.values[v_shift],&tmp_tendency[0],
&tmp_tendency_2[0],&self.ug[0], &self.vg[0],self.coriolis_param, Ref.u0, Ref.v0)
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency[0])
mean_tendency_2 = Pa.HorizontalMean(Gr,&tmp_tendency_2[0])
NS.write_profile('u_coriolis_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
NS.write_profile('v_coriolis_tendency',mean_tendency_2[Gr.dims.gw:-Gr.dims.gw],Pa)
return
cdef class ForcingSullivanPatton:
def __init__(self):
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.ug = np.ones(Gr.dims.nlg[2],dtype=np.double, order='c') #m/s
self.vg = np.zeros(Gr.dims.nlg[2],dtype=np.double, order='c') #m/s
self.coriolis_param = 1.0e-4 #s^{-1}
NS.add_profile('u_coriolis_tendency', Gr, Pa)
NS.add_profile('v_coriolis_tendency',Gr, Pa)
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV):
cdef:
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
coriolis_force(&Gr.dims,&PV.values[u_shift],&PV.values[v_shift],&PV.tendencies[u_shift],
&PV.tendencies[v_shift],&self.ug[0], &self.vg[0],self.coriolis_param, Ref.u0, Ref.v0 )
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
double [:] tmp_tendency = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
double [:] tmp_tendency_2 = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
double [:] mean_tendency = np.empty((Gr.dims.nlg[2],),dtype=np.double,order='c')
double [:] mean_tendency_2 = np.zeros((Gr.dims.nlg[2]),dtype=np.double,order='c')
#Only need to output coriolis_forcing
coriolis_force(&Gr.dims,&PV.values[u_shift],&PV.values[v_shift],&tmp_tendency[0],
&tmp_tendency_2[0],&self.ug[0], &self.vg[0],self.coriolis_param, Ref.u0, Ref.v0)
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency[0])
mean_tendency_2 = Pa.HorizontalMean(Gr,&tmp_tendency_2[0])
NS.write_profile('u_coriolis_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
NS.write_profile('v_coriolis_tendency',mean_tendency_2[Gr.dims.gw:-Gr.dims.gw],Pa)
return
cdef class ForcingGabls:
def __init__(self):
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.ug = np.ones(Gr.dims.nlg[2],dtype=np.double,order='c') * 8.0
self.vg = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
self.coriolis_param = 1.39e-4 #s^{-1}
NS.add_profile('u_coriolis_tendency', Gr, Pa)
NS.add_profile('v_coriolis_tendency',Gr, Pa)
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV):
cdef:
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
coriolis_force(&Gr.dims,&PV.values[u_shift],&PV.values[v_shift],&PV.tendencies[u_shift],
&PV.tendencies[v_shift],&self.ug[0], &self.vg[0],self.coriolis_param, Ref.u0, Ref.v0 )
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
double [:] tmp_tendency = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
double [:] tmp_tendency_2 = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
double [:] mean_tendency = np.empty((Gr.dims.npg,),dtype=np.double,order='c')
double [:] mean_tendency_2 = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
#Only need to output coriolis_forcing
coriolis_force(&Gr.dims,&PV.values[u_shift],&PV.values[v_shift],&tmp_tendency[0],
&tmp_tendency_2[0],&self.ug[0], &self.vg[0],self.coriolis_param, Ref.u0, Ref.v0)
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency[0])
mean_tendency_2 = Pa.HorizontalMean(Gr,&tmp_tendency_2[0])
NS.write_profile('u_coriolis_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
NS.write_profile('v_coriolis_tendency',mean_tendency_2[Gr.dims.gw:-Gr.dims.gw],Pa)
return
cdef class ForcingDyCOMS_RF01:
def __init__(self):
self.divergence = 3.75e-6
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t k
self.w = np.empty((Gr.dims.nlg[2]),dtype=np.double, order='c')
with nogil:
for k in range(Gr.dims.nlg[2]):
self.w_half[k] = -Gr.zl[k] * self.divergence
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV):
cdef:
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
Py_ssize_t s_shift = PV.get_varshift(Gr, 's')
Py_ssize_t qt_shift = PV.get_varshift(Gr,'qt')
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.w_half[0],&PV.values[s_shift],&PV.tendencies[s_shift])
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.w_half[0],&PV.values[qt_shift],&PV.tendencies[qt_shift])
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.w_half[0],&PV.values[u_shift],&PV.tendencies[u_shift])
apply_subsidence(&Gr.dims,&Ref.rho0[0],&Ref.rho0_half[0],&self.w_half[0],&PV.values[v_shift],&PV.tendencies[v_shift])
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cdef coriolis_force(Grid.DimStruct *dims, double *u, double *v, double *ut, double *vt, double *ug, double *vg, double coriolis_param, double u0, double v0 ):
cdef:
Py_ssize_t imin = dims.gw
Py_ssize_t jmin = dims.gw
Py_ssize_t kmin = dims.gw
Py_ssize_t imax = dims.nlg[0] -dims.gw
Py_ssize_t jmax = dims.nlg[1] -dims.gw
Py_ssize_t kmax = dims.nlg[2] -dims.gw
Py_ssize_t istride = dims.nlg[1] * dims.nlg[2]
Py_ssize_t jstride = dims.nlg[2]
Py_ssize_t ishift, jshift, ijk, i,j,k
double u_at_v, v_at_u
with nogil:
for i in xrange(imin,imax):
ishift = i*istride
for j in xrange(jmin,jmax):
jshift = j*jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
u_at_v = 0.25*(u[ijk] + u[ijk-istride] + u[ijk-istride+jstride] + u[ijk +jstride]) + u0
v_at_u = 0.25*(v[ijk] + v[ijk+istride] + v[ijk+istride-jstride] + v[ijk-jstride]) + v0
ut[ijk] = ut[ijk] - coriolis_param * (vg[k] - v_at_u)
vt[ijk] = vt[ijk] + coriolis_param * (ug[k] - u_at_v)
return
cdef apply_subsidence(Grid.DimStruct *dims, double *rho0, double *rho0_half, double *subsidence, double* values, double *tendencies):
cdef:
Py_ssize_t imin = dims.gw
Py_ssize_t jmin = dims.gw
Py_ssize_t kmin = dims.gw
Py_ssize_t imax = dims.nlg[0] -dims.gw
Py_ssize_t jmax = dims.nlg[1] -dims.gw
Py_ssize_t kmax = dims.nlg[2] -dims.gw
Py_ssize_t istride = dims.nlg[1] * dims.nlg[2]
Py_ssize_t jstride = dims.nlg[2]
Py_ssize_t ishift, jshift, ijk, i,j,k
double phim, fluxm
double phip, fluxp
double dxi = dims.dxi[2]
with nogil:
for i in xrange(imin,imax):
ishift = i*istride
for j in xrange(jmin,jmax):
jshift = j*jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
tendencies[ijk] = tendencies[ijk] - subsidence[k]*(values[ijk+1]-values[ijk])*dxi
return