forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGrid.pyx
182 lines (146 loc) · 6.83 KB
/
Grid.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport mpi4py.mpi_c as mpi
cimport ParallelMPI
cimport numpy as np
import numpy as np
import time
cdef class Grid:
'''
A class for storing information about the LES grid.
'''
def __init__(self,namelist,Parallel):
'''
:param namelist: Namelist dictionary
:param Parallel: ParallelMPI class
:return:
'''
self.dims.dims = namelist['grid']['dims']
#Get the grid spacing
self.dims.dx[0] = namelist['grid']['dx']
self.dims.dx[1] = namelist['grid']['dy']
self.dims.dx[2] = namelist['grid']['dz']
#Set the inverse grid spacing
self.dims.dxi[0] = 1.0/self.dims.dx[0]
self.dims.dxi[1] = 1.0/self.dims.dx[1]
self.dims.dxi[2] = 1.0/self.dims.dx[2]
#Get the grid dimensions and ghost points
self.dims.gw = namelist['grid']['gw']
self.dims.n[0] = namelist['grid']['nx']
self.dims.n[1]= namelist['grid']['ny']
self.dims.n[2] = namelist['grid']['nz']
#Compute the global and local dims
self.compute_global_dims()
self.compute_local_dims(Parallel)
self.compute_coordinates()
return
cdef inline void compute_global_dims(self):
'''
Compute the dimensions of the global of the domain, including ghost points and store the to self.dims.
:return:
'''
cdef int i
with nogil:
for i in range(self.dims.dims):
self.dims.ng[i] = self.dims.n[i] + 2*self.dims.gw
return
cdef inline void compute_local_dims(self,ParallelMPI.ParallelMPI Parallel):
'''
This function computes the local dimensions of the 3D array owned by each processor. No assumption is made
about the number of cores evenly dividing the number of global grid points in each directions. If the number of
grid points is not evenly divisible, we tack one additional point from the remainder onto each rank less the
the remainder.
:param Parallel:
:return:
'''
cdef:
int i
int ierr = 0
int maxdims = 3
int [3] mpi_dims
int [3] mpi_periods
int [3] mpi_coords
int remainder = 0
ierr = mpi.MPI_Cart_get(Parallel.cart_comm_world,maxdims,mpi_dims,mpi_periods,mpi_coords)
for i in xrange(3): #Here we loop over all three dimensions even if they are empty
self.dims.nl[i] = self.dims.n[i]//mpi_dims[i]
remainder = self.dims.n[i]%mpi_dims[i]
if remainder > 0 and mpi_coords[i] < remainder:
self.dims.nl[i] += 1
self.dims.nlg[i] = self.dims.nl[i] + 2 * self.dims.gw
#Now compute the high and lo indicies for this processor
for i in xrange(3):
npts = 0
nptsg = 0
proc = 0
while proc <= mpi_coords[i]:
self.dims.indx_lo[i] = npts
self.dims.indx_lo_g[i] = nptsg
npts += self.dims.n[i]//mpi_dims[i]
nptsg += self.dims.n[i]//mpi_dims[i] + 2 * self.dims.gw
remainder = self.dims.n[i]%mpi_dims[i]
if remainder >0 and proc < remainder:
npts += 1
nptsg += 1
proc += 1
self.dims.npd = np.max([self.dims.n[0],1])*np.max([self.dims.n[1],1])*np.max([self.dims.n[2],1])
self.dims.npl = self.dims.nl[0] * self.dims.nl[1] * self.dims.nl[2]
self.dims.npg = self.dims.nlg[0] * self.dims.nlg[1] * self.dims.nlg[2]
#Compute the number of ghostpoint for mpi_buffers
self.dims.nbuffer[0] = self.dims.gw * np.max([self.dims.nlg[1] * self.dims.nlg[2],
self.dims.nlg[1], self.dims.nlg[2] ])
self.dims.nbuffer[1] = self.dims.gw * np.max([self.dims.nlg[0] * self.dims.nlg[2],
self.dims.nlg[0], self.dims.nlg[2] ])
self.dims.nbuffer[2] = self.dims.gw * np.max([self.dims.nlg[0] * self.dims.nlg[1],
self.dims.nlg[0], self.dims.nlg[1] ])
self.dims.ghosted_stride[0] = np.max([self.dims.nlg[1] * self.dims.nlg[2],self.dims.nlg[1],self.dims.nlg[2]])
self.dims.ghosted_stride[1] = np.max([1,self.dims.nlg[0]])
self.dims.ghosted_stride[2] = 1
return
cdef void compute_coordinates(self):
'''
Compute the dimensional (with units) of meters coordiantes. x_half, y_half and z_half are
the grid cell center and x,y,z are at the grid cell edges.
:return:
'''
self.x_half = np.empty((self.dims.n[0]+2*self.dims.gw),dtype=np.double,order='c')
self.x = np.empty((self.dims.n[0]+2*self.dims.gw),dtype=np.double,order='c')
self.y_half = np.empty((self.dims.n[1]+2*self.dims.gw),dtype=np.double,order='c')
self.y = np.empty((self.dims.n[1]+2*self.dims.gw),dtype=np.double,order='c')
self.z_half = np.empty((self.dims.n[2]+2*self.dims.gw),dtype=np.double,order='c')
self.z = np.empty((self.dims.n[2]+2*self.dims.gw),dtype=np.double,order='c')
cdef int i, count = 0
for i in xrange(-self.dims.gw,self.dims.n[2]+self.dims.gw,1):
self.z[count] = (i + 1) * self.dims.dx[2]
self.z_half[count] = (i+0.5)*self.dims.dx[2]
count += 1
count = 0
for i in xrange(-self.dims.gw,self.dims.n[0]+self.dims.gw,1):
self.x[count] = (i + 1) * self.dims.dx[0]
self.x_half[count] = (i+0.5)*self.dims.dx[0]
count += 1
count = 0
for i in xrange(-self.dims.gw,self.dims.n[1]+self.dims.gw,1):
self.y[count] = (i + 1) * self.dims.dx[1]
self.y_half[count] = (i+0.5)*self.dims.dx[1]
count += 1
#Extract just the local components of the height coordinate
self.zl = self.extract_local_ghosted(self.z,2)
self.zl_half = self.extract_local_ghosted(self.zl,2)
#Extract just the local components of the height coordinate
self.xl = self.extract_local_ghosted(self.x,0)
self.xl_half = self.extract_local_ghosted(self.xl,0)
#Extract just the local components of the height coordinate
self.yl = self.extract_local_ghosted(self.y,1)
self.yl_half = self.extract_local_ghosted(self.yl,1)
return
cpdef extract_local(self,double [:] global_array, int dim):
pass
cpdef extract_local_ghosted(self,double [:] global_array, int dim):
cdef int start = self.dims.indx_lo_g[dim]
cdef int end = self.dims.indx_lo_g[dim] + self.dims.nlg[dim]
#Force a copy with the return statement
return np.array(global_array[start:end],dtype=np.double)