forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPressureSolver.pyx
175 lines (141 loc) · 6.04 KB
/
PressureSolver.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport ParallelMPI
cimport Grid
cimport ReferenceState
cimport PrognosticVariables
cimport DiagnosticVariables
cimport PressureFFTSerial
cimport PressureFFTParallel
import numpy as np
cimport numpy as np
import cython
cdef class PressureSolver:
def __init__(self):
pass
cpdef initialize(self,namelist, Grid.Grid Gr,ReferenceState.ReferenceState RS ,DiagnosticVariables.DiagnosticVariables DV, ParallelMPI.ParallelMPI PM):
DV.add_variables('dynamic_pressure','Pa','sym',PM)
DV.add_variables('divergence','1/s','sym',PM)
self.divergence = np.zeros(Gr.dims.npl,dtype=np.double, order='c')
#self.poisson_solver = PressureFFTSerial.PressureFFTSerial()
self.poisson_solver = PressureFFTParallel.PressureFFTParallel()
self.poisson_solver.initialize(Gr,RS,PM)
return
cpdef update(self,Grid.Grid Gr, ReferenceState.ReferenceState RS,
DiagnosticVariables.DiagnosticVariables DV, PrognosticVariables.PrognosticVariables PV, ParallelMPI.ParallelMPI PM):
cdef:
Py_ssize_t i
Py_ssize_t d
Py_ssize_t vel_shift
Py_ssize_t u_shift = PV.get_varshift(Gr,'u')
Py_ssize_t v_shift = PV.get_varshift(Gr,'v')
Py_ssize_t w_shift = PV.get_varshift(Gr,'w')
Py_ssize_t pres_shift = DV.get_varshift(Gr,'dynamic_pressure')
Py_ssize_t div_shift = DV.get_varshift(Gr,'divergence')
cdef double [:] u3_mean = PM.HorizontalMean(Gr,&PV.values[w_shift])
#Remove mean u3
remove_mean_u3(&Gr.dims,&u3_mean[0],&PV.values[w_shift])
u3_mean = PM.HorizontalMean(Gr,&PV.values[w_shift])
#Zero the divergence array [Perhaps we can replace this with a C-Call to Memset]
with nogil:
for i in xrange(Gr.dims.npg):
DV.values[div_shift + i] = 0.0
#Now compute the momentum divergence
for d in xrange(Gr.dims.dims):
vel_shift = PV.velocity_directions[d]*Gr.dims.npg
second_order_divergence(&Gr.dims, &RS.alpha0[0], &RS.alpha0_half[0],&PV.values[vel_shift],
&DV.values[div_shift] ,d)
#Now call the pressure solver
self.poisson_solver.solve(Gr, RS, DV, PM)
#Update pressure boundary condition
p_nv = DV.name_index['dynamic_pressure']
DV.communicate_variable(Gr,PM,p_nv)
#Apply pressure correction
second_order_pressure_correction(&Gr.dims,&DV.values[pres_shift],
&PV.values[u_shift],&PV.values[v_shift],&PV.values[w_shift])
#Switch this call at for a single variable boundary condition update
PV.update_all_bcs(Gr,PM)
return
cdef void second_order_pressure_correction(Grid.DimStruct *dims, double *p, double *u, double *v, double *w ):
cdef:
Py_ssize_t imin = 0
Py_ssize_t jmin = 0
Py_ssize_t kmin = 0
Py_ssize_t imax = dims.nlg[0] - 1
Py_ssize_t jmax = dims.nlg[1] - 1
Py_ssize_t kmax = dims.nlg[2] - 1
Py_ssize_t istride = dims.nlg[1] * dims.nlg[2]
Py_ssize_t jstride = dims.nlg[2]
Py_ssize_t ishift, jshift
Py_ssize_t i,j,k, ijk
Py_ssize_t ip1 = istride
Py_ssize_t jp1 = jstride
Py_ssize_t kp1 = 1
for i in xrange(imin,imax):
ishift = istride * i
for j in xrange(jmin,jmax):
jshift = jstride * j
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
u[ijk] -= (p[ijk + ip1] - p[ijk])*dims.dxi[0]
v[ijk] -= (p[ijk + jp1] - p[ijk])*dims.dxi[1]
w[ijk] -= (p[ijk + kp1] - p[ijk])*dims.dxi[2] #(p[ijk + kp1] - p[ijk])*dims.dxi[2]
return
cdef void remove_mean_u3(Grid.DimStruct *dims, double *u3_mean, double *velocity):
cdef:
Py_ssize_t imin = 0
Py_ssize_t jmin = 0
Py_ssize_t kmin = 0
Py_ssize_t imax = dims.nlg[0]
Py_ssize_t jmax = dims.nlg[1]
Py_ssize_t kmax = dims.nlg[2]
Py_ssize_t istride = dims.nlg[1] * dims.nlg[2]
Py_ssize_t jstride = dims.nlg[2]
Py_ssize_t ishift, jshift
Py_ssize_t ijk, i, j, k
with nogil:
for i in xrange(imin,imax):
ishift = i*istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
velocity[ijk] = velocity[ijk] - u3_mean[k]
return
cdef void second_order_divergence(Grid.DimStruct *dims, double *alpha0, double *alpha0_half, double *velocity,
double *divergence, Py_ssize_t d):
cdef:
Py_ssize_t imin = dims.gw
Py_ssize_t jmin = dims.gw
Py_ssize_t kmin = dims.gw
Py_ssize_t imax = dims.nlg[0] - dims.gw
Py_ssize_t jmax = dims.nlg[1] - dims.gw
Py_ssize_t kmax = dims.nlg[2] - dims.gw
Py_ssize_t istride = dims.nlg[1] * dims.nlg[2]
Py_ssize_t jstride = dims.nlg[2]
Py_ssize_t ishift, jshift
Py_ssize_t i,j,k,ijk
#Compute the s+trides given the dimensionality
Py_ssize_t [3] p1 = [istride, jstride, 1]
Py_ssize_t sm1 = -p1[d]
double dxi = 1.0/dims.dx[d]
if d != 2:
for i in xrange(imin,imax):
ishift = i*istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
divergence[ijk] += (velocity[ijk]/alpha0_half[k] - velocity[ijk+sm1]/alpha0_half[k])*dxi
else:
for i in xrange(imin,imax):
ishift = i*istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
divergence[ijk] += ((velocity[ijk]) /alpha0[k] - (velocity[ijk+sm1])/alpha0[k-1])*dxi
return