forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThermodynamicsDry.pyx
195 lines (156 loc) · 7.34 KB
/
ThermodynamicsDry.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport numpy as np
import numpy as np
cimport ParallelMPI
cimport Grid
cimport ReferenceState
cimport DiagnosticVariables
cimport PrognosticVariables
from NetCDFIO cimport NetCDFIO_Fields, NetCDFIO_Stats
from thermodynamic_functions cimport thetas_c
import cython
from Thermodynamics cimport LatentHeat, ClausiusClapeyron
cdef extern from "entropies.h":
inline double sd_c(double p0, double T) nogil
cdef extern from "thermodynamics_dry.h":
inline double eos_c(double p0, double s) nogil
inline double alpha_c(double p0, double T, double qt, double qv) nogil
void eos_update(Grid.DimStruct *dims, double *pd, double *s, double *T,
double *alpha)
void buoyancy_update(Grid.DimStruct *dims, double *alpha0, double *alpha,double *buoyancy,
double *wt)
void bvf_dry(Grid.DimStruct* dims, double* p0, double* T, double* theta, double* bvf)
cdef class ThermodynamicsDry:
def __init__(self,namelist,LatentHeat LH, ParallelMPI.ParallelMPI Pa):
self.L_fp = LH.L_fp
self.Lambda_fp = LH.Lambda_fp
self.CC = ClausiusClapeyron()
self.CC.initialize(namelist,LH,Pa)
return
cpdef initialize(self,Grid.Grid Gr,PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
PV.add_variable('s','m/s',"sym","scalar",Pa)
#Initialize class member arrays
DV.add_variables('buoyancy','--','sym',Pa)
DV.add_variables('alpha','--','sym',Pa)
DV.add_variables('temperature','K','sym',Pa)
DV.add_variables('buoyancy_frequency','1/s','sym',Pa)
DV.add_variables('theta','K','sym',Pa)
#Add statistical output
NS.add_profile('thetas_mean',Gr,Pa)
NS.add_profile('thetas_mean2',Gr,Pa)
NS.add_profile('thetas_mean3',Gr,Pa)
NS.add_profile('thetas_max',Gr,Pa)
NS.add_profile('thetas_min',Gr,Pa)
NS.add_ts('thetas_max',Gr,Pa)
NS.add_ts('thetas_min',Gr,Pa)
return
cpdef entropy(self,double p0, double T,double qt, double ql, double qi):
qt = 0.0
ql = 0.0
qi = 0.0
return sd_c(p0,T)
cpdef eos(self,double p0, double s, double qt):
ql = 0.0
qi = 0.0
return eos_c(p0,s), ql, qi
cpdef alpha(self, double p0, double T, double qt, double qv):
qv = 0.0
qt = 0.0
return alpha_c(p0,T,qv,qt)
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState RS,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV):
cdef Py_ssize_t buoyancy_shift = DV.get_varshift(Gr,'buoyancy')
cdef Py_ssize_t alpha_shift = DV.get_varshift(Gr,'alpha')
cdef Py_ssize_t t_shift = DV.get_varshift(Gr,'temperature')
cdef Py_ssize_t s_shift = PV.get_varshift(Gr,'s')
cdef Py_ssize_t w_shift = PV.get_varshift(Gr,'w')
cdef Py_ssize_t theta_shift = DV.get_varshift(Gr,'theta')
cdef Py_ssize_t bvf_shift = DV.get_varshift(Gr,'buoyancy_frequency')
eos_update(&Gr.dims,&RS.p0_half[0],&PV.values[s_shift],&DV.values[t_shift],&DV.values[alpha_shift])
buoyancy_update(&Gr.dims,&RS.alpha0_half[0],&DV.values[alpha_shift],&DV.values[buoyancy_shift],&PV.tendencies[w_shift])
bvf_dry(&Gr.dims,&RS.p0_half[0],&DV.values[t_shift],&DV.values[theta_shift],&DV.values[bvf_shift])
return
cpdef get_pv_star(self,t):
return self.CC.LT.fast_lookup(t)
cpdef get_lh(self,t):
cdef double lam = self.Lambda_fp(t)
return self.L_fp(lam,t)
cpdef write_fields(self, Grid.Grid Gr, ReferenceState.ReferenceState RS,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_Fields NF, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t i,j,k, ijk, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t imin = Gr.dims.gw
Py_ssize_t jmin = Gr.dims.gw
Py_ssize_t kmin = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t count
Py_ssize_t s_shift = PV.get_varshift(Gr,'s')
double [:] data = np.empty((Gr.dims.npl,),dtype=np.double,order='c')
#Add entropy potential temperature to 3d fields
with nogil:
count = 0
for i in range(imin,imax):
ishift = i * istride
for j in range(jmin,jmax):
jshift = j * jstride
for k in range(kmin,kmax):
ijk = ishift + jshift + k
data[count] = thetas_c(PV.values[s_shift+ijk],0.0)
count += 1
NF.add_field('thetas')
NF.write_field('thetas',data)
print(np.amax(data),np.amin(data))
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t i,j,k, ijk, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t imin = 0
Py_ssize_t jmin = 0
Py_ssize_t kmin = 0
Py_ssize_t imax = Gr.dims.nlg[0]
Py_ssize_t jmax = Gr.dims.nlg[1]
Py_ssize_t kmax = Gr.dims.nlg[2]
Py_ssize_t count
Py_ssize_t s_shift = PV.get_varshift(Gr,'s')
double [:] data = np.empty((Gr.dims.npg,),dtype=np.double,order='c')
double [:] tmp
#Add entropy potential temperature to 3d fields
with nogil:
count = 0
for i in range(imin,imax):
ishift = i * istride
for j in range(jmin,jmax):
jshift = j * jstride
for k in range(kmin,kmax):
ijk = ishift + jshift + k
data[count] = thetas_c(PV.values[s_shift+ijk],0.0)
count += 1
#Compute and write mean
tmp = Pa.HorizontalMean(Gr,&data[0])
NS.write_profile('thetas_mean',tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
#Compute and write mean of squres
tmp = Pa.HorizontalMeanofSquares(Gr,&data[0],&data[0])
NS.write_profile('thetas_mean2',tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
#Compute and write mean of cubes
tmp = Pa.HorizontalMeanofCubes(Gr,&data[0],&data[0],&data[0])
NS.write_profile('thetas_mean3',tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
#Compute and write maxes
tmp = Pa.HorizontalMaximum(Gr,&data[0])
NS.write_profile('thetas_max',tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
NS.write_ts('thetas_max',np.amax(tmp[Gr.dims.gw:-Gr.dims.gw]),Pa)
#Compute and write mins
tmp = Pa.HorizontalMinimum(Gr,&data[0])
NS.write_profile('thetas_min',tmp[Gr.dims.gw:-Gr.dims.gw],Pa)
NS.write_ts('thetas_min',np.amin(tmp[Gr.dims.gw:-Gr.dims.gw]),Pa)
return