-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathserank.py
569 lines (478 loc) · 23.4 KB
/
serank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# Copyright 2020 The TensorFlow Ranking Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""TF Ranking sample code for LETOR datasets in LibSVM format.
WARNING: All data sets are loaded into memory in this sample code. It is
for small data sets whose sizes are < 10G.
A note on the LibSVM format:
--------------------------------------------------------------------------
Due to the sparse nature of features utilized in most academic datasets for
learning to rank such as LETOR datasets, data points are represented in the
LibSVM format. In this setting, every line encapsulates features and a (graded)
relevance judgment of a query-document pair. The following illustrates the
general structure:
<relevance int> qid:<query_id int> [<feature_id int>:<feature_value float>]
For example:
1 qid:10 32:0.14 48:0.97 51:0.45
0 qid:10 1:0.15 31:0.75 32:0.24 49:0.6
2 qid:10 1:0.71 2:0.36 31:0.58 51:0.12
0 qid:20 4:0.79 31:0.01 33:0.05 35:0.27
3 qid:20 1:0.42 28:0.79 35:0.30 42:0.76
In the above example, the dataset contains two queries. Query "10" has 3
documents, two of which relevant with grades 1 and 2. Similarly, query "20"
has 1 relevant document. Note that query-document pairs may have different
sets of zero-valued features and as such their feature vectors may only
partly overlap or not at all.
--------------------------------------------------------------------------
You can use TensorBoard to display the training results stored in $OUTPUT_DIR.
Notes:
* Use --alsologtostderr if the output is not printed into screen.
* In addition, you can enable multi-objective learning by adding the following
flags: --secondary_loss=<the secondary loss key>.
"""
from absl import flags
import numpy as np
import six
import tensorflow as tf
import tensorflow_ranking as tfr
flags.DEFINE_string("train_path", None, "Input file path used for training.")
flags.DEFINE_string("vali_path", None, "Input file path used for validation.")
flags.DEFINE_string("test_path", None, "Input file path used for testing.")
flags.DEFINE_string("output_dir", None, "Output directory for models.")
flags.DEFINE_integer("train_batch_size", 32, "The batch size for training.")
flags.DEFINE_integer("num_train_steps", 5000, "Number of steps for training.")
flags.DEFINE_integer("save_checkpoints_steps", 1000, "Number of steps for save ckpt.")
flags.DEFINE_float("learning_rate", 0.1, "Learning rate for optimizer.")
flags.DEFINE_float("dropout_rate", 0.5, "The dropout rate before output layer.")
flags.DEFINE_list("hidden_layer_dims", ["256", "128", "64"],
"Sizes for hidden layers.")
flags.DEFINE_integer("num_features", 136, "Number of features per document.")
flags.DEFINE_integer("train_list_size", 200, "List size used for training.")
flags.DEFINE_integer("valid_list_size", 800, "List size used for valid and test.")
flags.DEFINE_integer("group_size", 1, "Group size used in score function.")
flags.DEFINE_string("loss", "softmax_loss",
"The RankingLossKey for the primary loss function.")
flags.DEFINE_string(
"secondary_loss", None, "The RankingLossKey for the secondary loss for "
"multi-objective learning.")
flags.DEFINE_float(
"secondary_loss_weight", 0.5, "The weight for the secondary loss in "
"multi-objective learning.")
flags.DEFINE_bool("serank", False, "serank")
flags.DEFINE_bool("query_label_weight", False, "use query label weight")
flags.DEFINE_float('shrinkage', 2.0, 'se block shrinkage')
flags.DEFINE_bool("shrink_first", False, "se block with shrink first")
flags.DEFINE_bool("without_squeeze", False, "se block without squeeze operation")
flags.DEFINE_bool("without_excite", False, "se block without excite operation")
flags.DEFINE_bool("tfrecord", False, "use tfrecord input")
FLAGS = flags.FLAGS
_PRIMARY_HEAD = "primary_head"
_SECONDARY_HEAD = "secondary_head"
def _use_multi_head():
"""Returns True if using multi-head."""
return FLAGS.secondary_loss is not None
class IteratorInitializerHook(tf.estimator.SessionRunHook):
"""Hook to initialize data iterator after session is created."""
def __init__(self):
super(IteratorInitializerHook, self).__init__()
self.iterator_initializer_fn = None
def after_create_session(self, session, coord):
"""Initialize the iterator after the session has been created."""
del coord
if self.iterator_initializer_fn is not None:
self.iterator_initializer_fn(session)
def example_feature_columns(with_mask=False):
"""Returns the example feature columns."""
feature_names = ["{}".format(i + 1) for i in range(FLAGS.num_features)]
if with_mask:
feature_names.append('mask')
return {
name:
tf.feature_column.numeric_column(name, shape=(1,), default_value=0.0)
for name in feature_names
}
def load_libsvm_data(path, list_size):
"""Returns features and labels in numpy.array."""
def _parse_line(line):
"""Parses a single line in LibSVM format."""
tokens = line.split("#")[0].split()
assert len(tokens) >= 2, "Ill-formatted line: {}".format(line)
label = float(tokens[0])
qid = tokens[1]
kv_pairs = [kv.split(":") for kv in tokens[2:]]
features = {k: float(v) for (k, v) in kv_pairs}
return qid, features, label
tf.compat.v1.logging.info("Loading data from {}".format(path))
# The 0-based index assigned to a query.
qid_to_index = {}
# The number of docs seen so far for a query.
qid_to_ndoc = {}
# Each feature is mapped an array with [num_queries, list_size, 1]. Label has
# a shape of [num_queries, list_size]. We use list for each of them due to the
# unknown number of quries.
feature_map = {k: [] for k in example_feature_columns()}
label_list = []
total_docs = 0
discarded_docs = 0
with open(path, "rt") as f:
for line in f:
qid, features, label = _parse_line(line)
if qid not in qid_to_index:
# Create index and allocate space for a new query.
qid_to_index[qid] = len(qid_to_index)
qid_to_ndoc[qid] = 0
for k in feature_map:
feature_map[k].append(np.zeros([list_size, 1], dtype=np.float32))
label_list.append(np.ones([list_size], dtype=np.float32) * -1.)
total_docs += 1
batch_idx = qid_to_index[qid]
doc_idx = qid_to_ndoc[qid]
qid_to_ndoc[qid] += 1
# Keep the first 'list_size' docs only.
if doc_idx >= list_size:
discarded_docs += 1
continue
for k, v in six.iteritems(features):
assert k in feature_map, "Key {} not found in features.".format(k)
feature_map[k][batch_idx][doc_idx, 0] = v
label_list[batch_idx][doc_idx] = label
tf.compat.v1.logging.info("Number of queries: {}".format(len(qid_to_index)))
tf.compat.v1.logging.info(
"Number of documents in total: {}".format(total_docs))
tf.compat.v1.logging.info(
"Number of documents discarded: {}".format(discarded_docs))
# Convert everything to np.array.
for k in feature_map:
feature_map[k] = np.array(feature_map[k])
return feature_map, np.array(label_list)
def get_train_inputs(features, labels, batch_size):
"""Set up training input in batches."""
iterator_initializer_hook = IteratorInitializerHook()
def _train_input_fn():
"""Defines training input fn."""
# mask out invalid samples for serank
features['mask'] = np.where(labels >= 0, 1.0, 0.0).astype(labels.dtype)
valid_label = np.where(labels > 0.0, labels, 0.0)
features['query_label_weight'] = np.sum(valid_label, axis=1, keepdims=True)
features_placeholder = {
k: tf.compat.v1.placeholder(v.dtype, v.shape)
for k, v in six.iteritems(features)
}
if _use_multi_head():
placeholder = tf.compat.v1.placeholder(labels.dtype, labels.shape)
labels_placeholder = {
_PRIMARY_HEAD: placeholder,
_SECONDARY_HEAD: placeholder,
}
else:
labels_placeholder = tf.compat.v1.placeholder(labels.dtype, labels.shape)
dataset = tf.data.Dataset.from_tensor_slices(
(features_placeholder, labels_placeholder))
dataset = dataset.shuffle(1000).repeat().batch(batch_size)
iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
if _use_multi_head():
feed_dict = {
labels_placeholder[head_name]: labels
for head_name in labels_placeholder
}
else:
feed_dict = {labels_placeholder: labels}
feed_dict.update(
{features_placeholder[k]: features[k] for k in features_placeholder})
iterator_initializer_hook.iterator_initializer_fn = (
lambda sess: sess.run(iterator.initializer, feed_dict=feed_dict))
return iterator.get_next()
return _train_input_fn, iterator_initializer_hook
def get_eval_inputs(features, labels):
"""Set up eval inputs in a single batch."""
iterator_initializer_hook = IteratorInitializerHook()
def _eval_input_fn():
"""Defines eval input fn."""
# mask out invalid samples for serank
features['mask'] = np.where(labels >= 0, 1.0, 0.0).astype(labels.dtype)
features_placeholder = {
k: tf.compat.v1.placeholder(v.dtype, v.shape)
for k, v in six.iteritems(features)
}
if _use_multi_head():
placeholder = tf.compat.v1.placeholder(labels.dtype, labels.shape)
labels_placeholder = {
_PRIMARY_HEAD: placeholder,
_SECONDARY_HEAD: placeholder,
}
else:
labels_placeholder = tf.compat.v1.placeholder(labels.dtype, labels.shape)
dataset = tf.data.Dataset.from_tensors(
(features_placeholder, labels_placeholder))
iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
if _use_multi_head():
feed_dict = {
labels_placeholder[head_name]: labels
for head_name in labels_placeholder
}
else:
feed_dict = {labels_placeholder: labels}
feed_dict.update(
{features_placeholder[k]: features[k] for k in features_placeholder})
iterator_initializer_hook.iterator_initializer_fn = (
lambda sess: sess.run(iterator.initializer, feed_dict=feed_dict))
return iterator.get_next()
return _eval_input_fn, iterator_initializer_hook
def make_serving_input_fn():
"""Returns serving input fn to receive tf.Example."""
feature_spec = tf.feature_column.make_parse_example_spec(
example_feature_columns().values())
return tf.estimator.export.build_parsing_serving_input_receiver_fn(
feature_spec)
def get_inputs(path, list_size, is_train=False):
def _tfrecord_input_fn():
def _parse_fn(proto):
features = {k: tf.io.FixedLenFeature([list_size], tf.float32) for k in example_feature_columns()}
features['label'] = tf.io.FixedLenFeature([list_size], tf.float32)
example = tf.io.parse_single_example(proto, features)
example['mask'] = tf.cast(example['label'] >= tf.zeros_like(example['label']), tf.float32)
return example, example['label']
dataset = tf.data.TFRecordDataset(path)
dataset = dataset.map(_parse_fn, num_parallel_calls=6)
if is_train:
dataset = dataset.repeat().shuffle(1000)
dataset = dataset.batch(FLAGS.train_batch_size).prefetch(8)
iterator = tf.compat.v1.data.make_one_shot_iterator(dataset)
return iterator.get_next()
return _tfrecord_input_fn, IteratorInitializerHook()
def make_transform_fn():
"""Returns a transform_fn that converts features to dense Tensors."""
def _transform_fn(features, mode):
"""Defines transform_fn."""
if mode == tf.estimator.ModeKeys.PREDICT:
# We expect tf.Example as input during serving. In this case, group_size
# must be set to 1.
if FLAGS.group_size != 1:
raise ValueError(
"group_size should be 1 to be able to export model, but get %s" %
FLAGS.group_size)
context_features, example_features = (
tfr.feature.encode_pointwise_features(
features=features,
context_feature_columns=None,
example_feature_columns=example_feature_columns(),
mode=mode,
scope="transform_layer"))
else:
context_features, example_features = tfr.feature.encode_listwise_features(
features=features,
context_feature_columns=None,
example_feature_columns=example_feature_columns(with_mask=True),
mode=mode,
scope="transform_layer")
return context_features, example_features
return _transform_fn
def make_se_block_fn(shrinkage=1.0, shrink_first=False, without_squeeze=False, without_excite=False):
def squeeze(cur_layer, last_dim, mask=None, list_size=1):
# output shape: [batch_size, 1, last_dim]
cur_layer = tf.reshape(cur_layer, [-1, list_size, last_dim])
if mask is None:
cur_layer = tf.reduce_mean(cur_layer, axis=1)
else:
# when training & eval, mask out padding records
mask = tf.reshape(mask, [-1, list_size, 1])
cur_layer = tf.reduce_sum(cur_layer * mask, axis=1) / tf.reduce_sum(mask + 1e-6, axis=1)
return cur_layer
def se_block_fn(input_layer, layer_width, mask=None, list_size=1):
# input_layer: [batch_size * list_size, dim]
# mask: [batch_size * list_size, 1]
dim = int(layer_width / shrinkage)
if shrink_first:
cur_layer = tf.compat.v1.layers.dense(input_layer, units=dim)
cur_layer = tf.nn.relu(cur_layer)
if not without_squeeze:
cur_layer = squeeze(cur_layer, dim, mask, list_size)
cur_layer = tf.reshape(tf.tile(cur_layer, [1, list_size]), [-1, list_size, dim])
else:
cur_layer = input_layer
if not without_squeeze:
cur_layer = squeeze(cur_layer, layer_width, mask, list_size)
cur_layer = tf.compat.v1.layers.dense(cur_layer, units=dim)
cur_layer = tf.nn.relu(cur_layer)
cur_layer = tf.reshape(tf.tile(cur_layer, [1, list_size]), [-1, list_size, dim])
cur_layer = tf.compat.v1.layers.dense(cur_layer, units=layer_width)
if without_excite:
cur_layer = tf.concat([input_layer, cur_layer], axis=-1)
else:
excitation = tf.reshape(tf.nn.sigmoid(cur_layer), [-1, layer_width])
cur_layer = input_layer * excitation
return cur_layer
return se_block_fn
def make_score_fn(se_block_fn=None):
"""Returns a groupwise score fn to build `EstimatorSpec`."""
def _score_fn(unused_context_features, group_features, mode, params,
unused_config):
"""Defines the network to score a group of documents."""
with tf.compat.v1.name_scope("input_layer"):
group_input = [
tf.compat.v1.layers.flatten(group_features[name])
for name in sorted(example_feature_columns())
]
input_layer = tf.concat(group_input, 1)
tf.compat.v1.summary.scalar("input_sparsity",
tf.nn.zero_fraction(input_layer))
tf.compat.v1.summary.scalar("input_max",
tf.reduce_max(input_tensor=input_layer))
tf.compat.v1.summary.scalar("input_min",
tf.reduce_min(input_tensor=input_layer))
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
cur_layer = tf.compat.v1.layers.batch_normalization(
input_layer, training=is_training)
for i, layer_width in enumerate(int(d) for d in FLAGS.hidden_layer_dims):
cur_layer = tf.compat.v1.layers.dense(cur_layer, units=layer_width)
cur_layer = tf.compat.v1.layers.batch_normalization(
cur_layer, training=is_training)
cur_layer = tf.nn.relu(cur_layer)
tf.compat.v1.summary.scalar("fully_connected_{}_sparsity".format(i),
tf.nn.zero_fraction(cur_layer))
if se_block_fn:
if is_training:
list_size = params['train_list_size']
else:
list_size = params.get('list_size', 1)
cur_layer = se_block_fn(cur_layer, layer_width, group_features.get('mask'), list_size)
cur_layer = tf.compat.v1.layers.dropout(
cur_layer, rate=FLAGS.dropout_rate, training=is_training)
logits = tf.compat.v1.layers.dense(cur_layer, units=FLAGS.group_size)
if _use_multi_head():
# Duplicate the logits for both heads.
return {_PRIMARY_HEAD: logits, _SECONDARY_HEAD: logits}
else:
return logits
return _score_fn
def get_eval_metric_fns():
"""Returns a dict from name to metric functions."""
metric_fns = {}
metric_fns.update({
"metric/%s" % name: tfr.metrics.make_ranking_metric_fn(name) for name in [
tfr.metrics.RankingMetricKey.ARP,
tfr.metrics.RankingMetricKey.ORDERED_PAIR_ACCURACY,
]
})
metric_fns.update({
"metric/ndcg@%d" % topn: tfr.metrics.make_ranking_metric_fn(
tfr.metrics.RankingMetricKey.NDCG, topn=topn)
for topn in [1, 3, 5, 10]
})
return metric_fns
def train_and_eval():
"""Train and Evaluate."""
if FLAGS.tfrecord:
train_input_fn, train_hook = get_inputs(FLAGS.train_path, FLAGS.train_list_size, is_train=True)
vali_input_fn, vali_hook = get_inputs(FLAGS.vali_path, FLAGS.valid_list_size)
test_input_fn, test_hook = get_inputs(FLAGS.test_path, FLAGS.valid_list_size)
else:
features, labels = load_libsvm_data(FLAGS.train_path, FLAGS.train_list_size)
train_input_fn, train_hook = get_train_inputs(features, labels,
FLAGS.train_batch_size)
features_vali, labels_vali = load_libsvm_data(FLAGS.vali_path,
FLAGS.valid_list_size)
vali_input_fn, vali_hook = get_eval_inputs(features_vali, labels_vali)
features_test, labels_test = load_libsvm_data(FLAGS.test_path,
FLAGS.valid_list_size)
test_input_fn, test_hook = get_eval_inputs(features_test, labels_test)
optimizer = tf.compat.v1.train.AdagradOptimizer(
learning_rate=FLAGS.learning_rate)
def _train_op_fn(loss):
"""Defines train op used in ranking head."""
update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
minimize_op = optimizer.minimize(
loss=loss, global_step=tf.compat.v1.train.get_global_step())
train_op = tf.group([minimize_op, update_ops])
return train_op
weights_feature_name = 'query_label_weight' if FLAGS.query_label_weight else None
if _use_multi_head():
primary_head = tfr.head.create_ranking_head(
loss_fn=tfr.losses.make_loss_fn(FLAGS.loss, weights_feature_name=weights_feature_name),
eval_metric_fns=get_eval_metric_fns(),
train_op_fn=_train_op_fn,
name=_PRIMARY_HEAD)
secondary_head = tfr.head.create_ranking_head(
loss_fn=tfr.losses.make_loss_fn(FLAGS.secondary_loss, weights_features_name=weights_feature_name),
eval_metric_fns=get_eval_metric_fns(),
train_op_fn=_train_op_fn,
name=_SECONDARY_HEAD)
ranking_head = tfr.head.create_multi_ranking_head(
[primary_head, secondary_head], [1.0, FLAGS.secondary_loss_weight])
else:
ranking_head = tfr.head.create_ranking_head(
loss_fn=tfr.losses.make_loss_fn(FLAGS.loss),
eval_metric_fns=get_eval_metric_fns(),
train_op_fn=_train_op_fn)
se_block_fn = None
if FLAGS.serank:
se_block_fn = make_se_block_fn(shrinkage=FLAGS.shrinkage,
shrink_first=FLAGS.shrink_first,
without_squeeze=FLAGS.without_squeeze,
without_excite=FLAGS.without_excite)
estimator = tf.estimator.Estimator(
model_fn=tfr.model.make_groupwise_ranking_fn(
group_score_fn=make_score_fn(se_block_fn),
group_size=FLAGS.group_size,
transform_fn=make_transform_fn(),
ranking_head=ranking_head),
config=tf.estimator.RunConfig(
FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps),
params={'train_list_size': FLAGS.train_list_size,
'list_size': FLAGS.valid_list_size})
early_stopping_hook = tf.estimator.experimental.stop_if_no_increase_hook(
estimator=estimator,
metric_name='metric/ndcg@5',
max_steps_without_increase=FLAGS.save_checkpoints_steps * 3)
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn,
hooks=[train_hook, early_stopping_hook],
max_steps=FLAGS.num_train_steps)
# Export model to accept tf.Example when group_size = 1.
if FLAGS.group_size == 1:
vali_spec = tf.estimator.EvalSpec(
input_fn=vali_input_fn,
hooks=[vali_hook],
steps=1,
exporters=tf.estimator.LatestExporter(
"latest_exporter",
serving_input_receiver_fn=make_serving_input_fn()),
start_delay_secs=0,
throttle_secs=30)
else:
vali_spec = tf.estimator.EvalSpec(
input_fn=vali_input_fn,
hooks=[vali_hook],
steps=1,
start_delay_secs=0,
throttle_secs=30)
# Train and validate
tf.estimator.train_and_evaluate(estimator, train_spec, vali_spec)
# Evaluate on the test data.
from tensorflow.python.training import checkpoint_management
latest_path = checkpoint_management.latest_checkpoint(FLAGS.output_dir)
path, step = latest_path.rsplit('-', 1)
step = int(step) - FLAGS.save_checkpoints_steps * 3
best_path = path + '-' + str(step)
estimator.evaluate(input_fn=test_input_fn, hooks=[test_hook], checkpoint_path=best_path)
def main(_):
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
train_and_eval()
if __name__ == "__main__":
flags.mark_flag_as_required("train_path")
flags.mark_flag_as_required("vali_path")
flags.mark_flag_as_required("test_path")
flags.mark_flag_as_required("output_dir")
tf.random.set_random_seed(0)
tf.compat.v1.app.run()