-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.cpp
65 lines (52 loc) · 1.83 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/NonLinearOptimization>
#include <unsupported/Eigen/NumericalDiff>
// Generic functor
template<typename _Scalar, int NX = Eigen::Dynamic, int NY = Eigen::Dynamic>
struct Functor
{
typedef _Scalar Scalar;
enum {
InputsAtCompileTime = NX,
ValuesAtCompileTime = NY
};
typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
int m_inputs, m_values;
Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
};
struct my_functor : Functor<double>
{
my_functor(void): Functor<double>(2,2) {}
int operator()(const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const
{
// Implement y = 10*(x0+3)^2 + (x1-5)^2
fvec(0) = 10.0*pow(x(0)+3.0,2) + pow(x(1)-5.0,2);
fvec(1) = 0;
return 0;
}
};
int main(int argc, char *argv[]) {
Eigen::VectorXd x(2);
x(0) = 2.0;
x(1) = 3.0;
std::cout << "x: " << x << std::endl;
my_functor functor;
Eigen::NumericalDiff<my_functor> numDiff(functor);
Eigen::LevenbergMarquardt<Eigen::NumericalDiff<my_functor>,double> lm(numDiff);
lm.parameters.maxfev = 2000;
lm.parameters.xtol = 1.0e-10;
std::cout << lm.parameters.maxfev << std::endl;
int ret = lm.minimize(x);
std::cout << lm.iter << std::endl;
std::cout << ret << std::endl;
std::cout << "x that minimizes the function: " << x << std::endl;
std::cout << "press [ENTER] to continue " << std::endl;
std::cin.get();
return 0;
}