-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset3Params.m
52 lines (44 loc) · 1.71 KB
/
dataset3Params.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
gap = [ 0.01 0.03 0.1 0.3 1 3 10 30]
optim_C = 0.01;
optim_sigma = 0.01;
model = svmTrain(X,y,C,@(x1,x2)gaussianKernel(x1,x2,sigma));
predictions = svmPredict(model,Xval);
minError = mean(double(predictions ~= yval));
for C = gap
for sigma = gap
model = svmTrain(X,y,C,@(x1,x2)gaussianKernel(x1,x2,sigma));
predictions = svmPredict(model,Xval);
error = mean(double(predictions ~= yval));
if error < minError
minError = error;
optim_C = C;
optim_sigma = sigma;
end;
end;
end;
C = optim_C;
sigma = optim_sigma;
% =========================================================================
end