-
Notifications
You must be signed in to change notification settings - Fork 22
/
flow_feature_map.py
executable file
·145 lines (119 loc) · 4.91 KB
/
flow_feature_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import os
import sys
import math
import cv2
import numpy as np
import multiprocessing
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
caffe_root = '/home/zhujiagang/temporal-segment-networks/lib/caffe-action/'
sys.path.insert(0, caffe_root + 'python')
from pyActionRecog import parse_directory
from pyActionRecog import parse_split_file
from pyActionRecog.utils.video_funcs import default_aggregation_func
dataset ='ucf101'
split =1
modality ='flow'
frame_path = '/home/zjg/zjg/tsncaffe/UCF-101-result/'
net_proto = "/home/zhujiagang/temporal-segment-networks/models/ucf101/tsn_bn_inception_flow_deploy.prototxt"
net_weights = "/home/zhujiagang/temporal-segment-networks/models/ucf101_split_1_tsn_flow_reference_bn_inception.caffemodel"
rgb_prefix ='img_'
flow_x_prefix ='flow_x_'
flow_y_prefix ='flow_y_'
num_frame_per_video = 1
save_scores = None
num_worker = 1
num_id = 1
gpus = [1]
from pyActionRecog.action_caffe import CaffeNet
# build neccessary information
print dataset
split_tp = parse_split_file(dataset)
f_info = parse_directory(frame_path, rgb_prefix, flow_x_prefix, flow_y_prefix)
gpu_list = None
eval_video_list = split_tp[split - 1][1]
score_name = 'prob'
def build_net():
global net
my_id = multiprocessing.current_process()._identity[0] \
if num_worker > 1 else 1
if gpu_list is None:
net = CaffeNet(net_proto, net_weights, my_id-1)
else:
net = CaffeNet(net_proto, net_weights, gpu_list[my_id - 1])
def vis_square(data):
"""Take an array of shape (n, height, width) or (n, height, width, 3)
and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
# normalize data for display
data = (data - data.min()) / (data.max() - data.min())
# force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = (((0, n ** 2 - data.shape[0]),
(0, 1), (0, 1)) # add some space between filters
+ ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one)
data = np.pad(data, padding, mode='constant', constant_values=1) # pad with ones (white)
# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.imshow(data);
plt.axis('off')
def eval_video(video):
global net
label = video[1]
vid = video[0]
video_frame_path = f_info[0][vid]
cnt_indexer = 2
frame_cnt = f_info[cnt_indexer][vid]
stack_depth = 5
if num_frame_per_video >= 2:
step = (frame_cnt - stack_depth) / (num_frame_per_video-1)
if step > 0:
frame_ticks = range(1, min((2 + step * (num_frame_per_video-1)), frame_cnt+1), step)
else:
frame_ticks = [1] * num_frame_per_video
else:
if frame_cnt > stack_depth:
frame_ticks = [(frame_cnt - stack_depth) / 2]
else:
frame_ticks = [frame_cnt / 2]
assert(len(frame_ticks) == num_frame_per_video)
frame_scores = []
for tick in frame_ticks:
ii = 0
if modality == 'rgb':
name = '{}{:05d}.jpg'.format(rgb_prefix, tick)
frame = cv2.imread(os.path.join(video_frame_path, name), cv2.IMREAD_COLOR)
scores = net.predict_single_frame([frame, ], score_name, frame_size=(340, 256))
frame_scores.append(scores)
if modality == 'flow':
frame_idx = [min(frame_cnt, tick + offset) for offset in xrange(stack_depth)]
flow_stack = []
for idx in frame_idx:
ii = ii + 1
x_name = '{}{:05d}.jpg'.format(flow_x_prefix, idx)
y_name = '{}{:05d}.jpg'.format(flow_y_prefix, idx)
flow_stack.append(cv2.imread(os.path.join(video_frame_path, x_name), cv2.IMREAD_GRAYSCALE))
flow_stack.append(cv2.imread(os.path.join(video_frame_path, y_name), cv2.IMREAD_GRAYSCALE))
scores, feat = net.predict_single_flow_stack_feature_map(flow_stack, score_name, frame_size=(224, 224))
vis_square(feat)
frame_scores.append(scores)
print 'video {} done'.format(vid)
sys.stdin.flush()
return np.array(frame_scores), label
if num_worker > 1:
pool = multiprocessing.Pool(num_worker, initializer=build_net)
video_scores = pool.map(eval_video, eval_video_list)
else:
build_net()
video_scores = map(eval_video, eval_video_list)
video_pred = [np.argmax(default_aggregation_func(x[0])) for x in video_scores]
video_labels = [x[1] for x in video_scores]
cf = confusion_matrix(video_labels, video_pred).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_acc = cls_hit/cls_cnt
print cls_acc
print 'Accuracy {:.02f}%'.format(np.mean(cls_acc)*100)
if save_scores is not None:
np.savez(save_scores, scores=video_scores, labels=video_labels)