forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fsdp_utils.py
558 lines (509 loc) · 19.3 KB
/
fsdp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Any, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.utils._pytree as pytree
from torchao.float8.float8_scaling_utils import (
hp_tensor_to_float8_delayed,
hp_tensor_to_float8_dynamic,
)
from torchao.float8.float8_tensor import (
Float8Tensor,
GemmInputRole,
hp_tensor_and_scale_to_float8,
LinearMMConfig,
)
from torchao.float8.float8_utils import e4m3_dtype, EPS
from torch._prims_common import suggest_memory_format
@torch.no_grad()
def precompute_float8_dynamic_scale_for_fsdp(module: nn.Module) -> None:
"""
Calculate scale dynamically for all float8 parameters.
This should be run after the optimizer step. It performs a single all-reduce to compute the
scales for all float8 weights.
Example usage:
model(input).sum().backward()
optim.step()
precompute_float8_dynamic_scale_for_fsdp(model)
"""
from torchao.float8.config import ScalingType
from torchao.float8.float8_linear import Float8Linear
from torch.distributed._tensor import DTensor
if any(
isinstance(m, Float8Linear) and m.scaling_type_weight is ScalingType.DELAYED
for m in module.modules()
):
raise NotImplementedError("Only supports delayed scaling")
float8_linears: List[Float8Linear] = [
m
for m in module.modules()
if isinstance(m, Float8Linear)
and isinstance(m.weight, DTensor)
and isinstance(m.weight._local_tensor, WeightWithDynamicFloat8CastTensor)
]
weights: List[DTensor] = [float8_linear.weight for float8_linear in float8_linears]
if not weights:
return
# inf-norm is equivalent to max(abs(w))
max_weights = torch._foreach_norm(weights, ord=math.inf) # Partial
amax_tensor = torch.stack(max_weights) # Partial
# clamp is dispatched through DTensor
# it will issue a single all-reduce
amax_tensor = torch.clamp(amax_tensor, EPS) # Replicate
# keep consistent with float8_utils.amax_to_scale
# torch.compile and eager show different numerics for 1.0 / float32,
# upcast to float64 to ensure same numeric between compile and eager
origin_dtype = amax_tensor.dtype
amax_tensor = amax_tensor.to(torch.float64)
scale_tensor = torch.finfo(torch.float8_e4m3fn).max / amax_tensor # Replicate
if origin_dtype is torch.float16:
scale_tensor = torch.clamp(scale_tensor, max=torch.finfo(torch.float16).max)
local_scale_tensor = scale_tensor.to_local().to(torch.float32)
for i, float8_linear in enumerate(float8_linears):
float8_linear.weight._local_tensor._precomputed_scale = local_scale_tensor[i]
# FSDP pads its local tensor on dim-0. The subclass should be preserved such
# that the padded local tensor (and any transformations like copying to GPU)
# is of the subclass as well.
_ops_to_preserve_subclass = {
torch.ops.aten.empty_like.default,
torch.ops.aten.new_zeros.default,
torch.ops.aten.slice.Tensor,
torch.ops.aten.copy_.default,
torch.ops.aten.view.default,
torch.ops.aten.as_strided.default,
torch.ops.aten._to_copy.default,
torch.ops.aten._pin_memory.default,
torch.ops.aten.split.Tensor,
torch.ops.aten.clone.default,
}
# How Tensor Parallel (TP) and FSDP2 work
# Initialization: apply TP first then FSDP2
# nn.Linear(weight=torch.Tensor)
# |
# | apply float8 linear, `convert_to_float8_training`
# |
# Float8Linear(weight=WeightWithDynamicFloat8CastTensor)
# |
# | apply tensor parallel, `parallelize_module` shards rowwise/colwise
# |
# Float8Linear(weight=DTensor(local_tensor=WeightWithDynamicFloat8CastTensor,
# device_mesh=DeviceMesh([0, 1], mesh_dim_names=('tp',)),
# placements=(Shard(dim=0),)))
# |
# | apply FSDP2, `fully_shard` shards rowwise (dim=0)
# |
# Float8Linear(weight=DTensor(local_tensor=WeightWithDynamicFloat8CastTensor,
# device_mesh=DeviceMesh([[0, 1], [2, 3]], mesh_dim_names=('dp', 'tp')),
# placements=(Shard(dim=0), Shard(dim=0))))
# Forward and backward: FSDP runs first then TP
# Float8Linear(weight=DTensor(local_tensor=WeightWithDynamicFloat8CastTensor,
# device_mesh=DeviceMesh([[0, 1], [2, 3]], mesh_dim_names=('dp', 'tp')),
# placements=(Shard(dim=0), Shard(dim=0))))
# |
# | FSDP unshards parameters within dp mesh
# |
# Float8Linear(weight=DTensor(local_tensor=WeightWithDynamicFloat8CastTensor,
# device_mesh=DeviceMesh([0, 1], mesh_dim_names=('tp',)),
# placements=(Shard(dim=0),)))
# |
# | TP compute with torch.mm(input, weight)
class WeightWithDynamicFloat8CastTensor(torch.Tensor):
@staticmethod
def __new__(
cls,
tensor: torch.Tensor,
linear_mm_config: LinearMMConfig,
precomputed_scale: Optional[torch.Tensor] = None,
):
return torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
strides=tensor.stride(),
storage_offset=tensor.storage_offset(),
memory_format=suggest_memory_format(tensor),
dtype=tensor.dtype,
layout=tensor.layout,
device=tensor.device,
pin_memory=tensor.is_pinned(),
requires_grad=tensor.requires_grad,
)
def __init__(
self,
tensor: torch.Tensor,
linear_mm_config: LinearMMConfig,
precomputed_scale: Optional[torch.Tensor] = None,
):
self._tensor = tensor
self._linear_mm_config = linear_mm_config
# for dynamic scaling
# `precompute_float8_dynamic_scale_for_fsdp` calculates scales
# for all float8 parameters after optimizer step
self._precomputed_scale = precomputed_scale
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
if func == torch.ops.aten.detach.default:
return WeightWithDynamicFloat8CastTensor(
args[0]._tensor, args[0]._linear_mm_config
)
mm_config: Optional[LinearMMConfig] = None
def unwrap(t):
nonlocal mm_config
if mm_config is None:
mm_config = t._linear_mm_config
else:
assert t._linear_mm_config == mm_config
return t._tensor
args, kwargs = pytree.tree_map_only(
WeightWithDynamicFloat8CastTensor, unwrap, (args, kwargs or {})
)
out = func(*args, **kwargs)
if func not in _ops_to_preserve_subclass:
return out
return pytree.tree_map_only(
torch.Tensor, lambda x: WeightWithDynamicFloat8CastTensor(x, mm_config), out
)
def __tensor_flatten__(self):
if self._precomputed_scale:
return ["_tensor", "_precomputed_scale"], self._linear_mm_config
else:
return ["_tensor"], self._linear_mm_config
@staticmethod
def __tensor_unflatten__(inner_tensors, flatten_spec, outer_size, outer_stride):
mm_config = flatten_spec
return WeightWithDynamicFloat8CastTensor(
inner_tensors["_tensor"],
mm_config,
getattr(inner_tensors, "_precomputed_scale", None),
)
def __repr__(self):
return f"WeightWithDynamicFloat8CastTensor(tensor={self._tensor}, linear_mm_config={self._linear_mm_config})"
def fsdp_pre_all_gather(self, mesh):
if self._precomputed_scale is not None:
float8_tensor = hp_tensor_and_scale_to_float8(
self._tensor,
self._precomputed_scale,
torch.float8_e4m3fn,
self._linear_mm_config,
GemmInputRole.WEIGHT,
)
else:
float8_tensor = hp_tensor_to_float8_dynamic(
self._tensor,
e4m3_dtype,
self._linear_mm_config,
reduce_amax=True,
gemm_input_role=GemmInputRole.WEIGHT,
device_mesh=mesh,
)
return (float8_tensor._data,), (float8_tensor._scale,)
def fsdp_post_all_gather(
self,
all_gather_outputs: Tuple[torch.Tensor, ...],
metadata: Any,
param_dtype: torch.dtype,
*,
out: Optional[torch.Tensor] = None,
):
(data,) = all_gather_outputs
(scale,) = metadata
if out is not None:
from torch.distributed._tensor import DTensor
if isinstance(out, Float8Tensor):
out._scale = scale
elif isinstance(out, DTensor) and isinstance(
out._local_tensor, Float8Tensor
):
out._local_tensor._scale = scale
else:
raise RuntimeError(
f"out must be a Float8Tensor or DTensor(_local_tensor=Float8Tensor), but got {out}"
)
return
return Float8Tensor(
data,
scale,
param_dtype,
self._linear_mm_config,
gemm_input_role=GemmInputRole.WEIGHT,
), (data,)
class WeightWithDelayedFloat8CastTensor(torch.Tensor):
@staticmethod
def __new__(
cls,
tensor: torch.Tensor,
amax_buffer: torch.Tensor,
amax_history_buffer: torch.Tensor,
scale_buffer: torch.Tensor,
linear_mm_config: LinearMMConfig,
is_amax_initialized: bool,
):
return torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
strides=tensor.stride(),
storage_offset=tensor.storage_offset(),
memory_format=suggest_memory_format(tensor),
dtype=tensor.dtype,
layout=tensor.layout,
device=tensor.device,
pin_memory=tensor.is_pinned(),
requires_grad=tensor.requires_grad,
)
def __init__(
self,
tensor: torch.Tensor,
amax_buffer: torch.Tensor,
amax_history_buffer: torch.Tensor,
scale_buffer: torch.Tensor,
linear_mm_config: LinearMMConfig,
is_amax_initialized: bool,
):
self._tensor = tensor
self._amax_buffer = amax_buffer
self._amax_history_buffer = amax_history_buffer
self._scale_buffer = scale_buffer
self._linear_mm_config = linear_mm_config
# Note: is_amax_initialized is not a buffer to avoid data dependent
# control flow visible to dynamo
# TODO(future PR): add serialization for this flag
self.is_amax_initialized = is_amax_initialized
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
if func == torch.ops.aten.detach.default:
return WeightWithDelayedFloat8CastTensor(
args[0]._tensor,
args[0]._amax_buffer,
args[0]._amax_history_buffer,
args[0]._scale_buffer,
args[0]._linear_mm_config,
args[0].is_amax_initialized,
)
mm_config: Optional[LinearMMConfig] = None
amax_buffer: Optional[torch.Tensor] = None
amax_history_buffer: Optional[torch.Tensor] = None
scale_buffer: Optional[torch.Tensor] = None
is_amax_initialized: Optional[bool] = None
def unwrap(t):
nonlocal mm_config
if mm_config is None:
mm_config = t._linear_mm_config
else:
assert t._linear_mm_config == mm_config
nonlocal amax_buffer
if amax_buffer is None:
amax_buffer = t._amax_buffer
nonlocal amax_history_buffer
if amax_history_buffer is None:
amax_history_buffer = t._amax_history_buffer
nonlocal scale_buffer
if scale_buffer is None:
scale_buffer = t._scale_buffer
nonlocal is_amax_initialized
if is_amax_initialized is None:
is_amax_initialized = t.is_amax_initialized
return t._tensor
args, kwargs = pytree.tree_map_only(
WeightWithDelayedFloat8CastTensor, unwrap, (args, kwargs or {})
)
out = func(*args, **kwargs)
if func not in _ops_to_preserve_subclass:
return out
return pytree.tree_map_only(
torch.Tensor,
lambda x: WeightWithDelayedFloat8CastTensor(
x,
amax_buffer,
amax_history_buffer,
scale_buffer,
mm_config,
is_amax_initialized,
),
out,
)
def __tensor_flatten__(self):
return (
[
"_tensor",
"_amax_buffer",
"_amax_history_buffer",
"_scale_buffer",
],
{
"mm_config": self._linear_mm_config,
"is_amax_initialized": self.is_amax_initialized,
},
)
@staticmethod
def __tensor_unflatten__(inner_tensors, metadata, outer_size, outer_stride):
return WeightWithDelayedFloat8CastTensor(
inner_tensors["_tensor"],
inner_tensors["_amax_buffer"],
inner_tensors["_amax_history_buffer"],
inner_tensors["_scale_buffer"],
metadata["mm_config"],
metadata["is_amax_initialized"],
)
def __repr__(self):
return f"WeightWithDelayedFloat8CastTensor(tensor={self._tensor}, amax_buffer={self._amax_buffer}, scale_buffer={self._scale_buffer}, mm_config={self._linear_mm_config})"
def fsdp_pre_all_gather(self, mesh):
# initialize if needed
# TODO(before land): ensure settings are consistent between Float8Linear and here
if not self.is_amax_initialized:
from torchao.float8.float8_linear import (
_maybe_initialize_amaxes_scales_for_float8_cast,
)
_maybe_initialize_amaxes_scales_for_float8_cast(
self._tensor,
self._amax_buffer,
self._amax_history_buffer,
self._scale_buffer,
"max", # TODO(before land): read this from parent
e4m3_dtype,
self.is_amax_initialized,
reduce_amax=True,
)
self.is_amax_initialized = True
float8_tensor = hp_tensor_to_float8_delayed(
self._tensor,
self._scale_buffer,
e4m3_dtype,
self._amax_buffer,
self._linear_mm_config,
GemmInputRole.WEIGHT,
)
return (float8_tensor._data,), (float8_tensor._scale,)
def fsdp_post_all_gather(
self,
all_gather_outputs: Tuple[torch.Tensor, ...],
metadata: Any,
param_dtype: torch.dtype,
*,
out: Optional[torch.Tensor] = None,
):
(data,) = all_gather_outputs
(scale,) = metadata
if out is not None:
assert isinstance(out, Float8Tensor), f"{type(out)}"
out._scale = scale
return
return Float8Tensor(
data,
scale,
param_dtype,
self._linear_mm_config,
gemm_input_role=GemmInputRole.WEIGHT,
), (data,)
class WeightWithStaticFloat8CastTensor(torch.Tensor):
@staticmethod
def __new__(
cls,
tensor: torch.Tensor,
static_scale: torch.Tensor,
linear_mm_config: LinearMMConfig,
):
return torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
strides=tensor.stride(),
storage_offset=tensor.storage_offset(),
memory_format=suggest_memory_format(tensor),
dtype=tensor.dtype,
layout=tensor.layout,
device=tensor.device,
pin_memory=tensor.is_pinned(),
requires_grad=tensor.requires_grad,
)
def __init__(
self,
tensor: torch.Tensor,
static_scale: torch.Tensor,
linear_mm_config: LinearMMConfig,
):
self._tensor = tensor
self._static_scale = static_scale
self._linear_mm_config = linear_mm_config
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
if func == torch.ops.aten.detach.default:
return WeightWithStaticFloat8CastTensor(
args[0]._tensor, args[0]._static_scale, args[0]._linear_mm_config
)
static_scale: Optional[torch.Tensor] = None
mm_config: Optional[LinearMMConfig] = None
def unwrap(t):
nonlocal static_scale
if static_scale is None:
static_scale = t._static_scale
nonlocal mm_config
if mm_config is None:
mm_config = t._linear_mm_config
else:
assert t._linear_mm_config == mm_config
return t._tensor
args, kwargs = pytree.tree_map_only(
WeightWithStaticFloat8CastTensor, unwrap, (args, kwargs or {})
)
out = func(*args, **kwargs)
if func not in _ops_to_preserve_subclass:
return out
return pytree.tree_map_only(
torch.Tensor,
lambda x: WeightWithStaticFloat8CastTensor(x, static_scale, mm_config),
out,
)
def __tensor_flatten__(self):
return ["_tensor", "_static_scale"], self._linear_mm_config
@staticmethod
def __tensor_unflatten__(inner_tensors, flatten_spec, outer_size, outer_stride):
mm_config = flatten_spec
return WeightWithStaticFloat8CastTensor(
inner_tensors["_tensor"],
inner_tensors["_static_scale"],
mm_config,
)
def __repr__(self):
return f"WeightWithStaticFloat8CastTensor(tensor={self._tensor}, static_scale={self._static_scale}, linear_mm_config={self._linear_mm_config})"
def fsdp_pre_all_gather(self, mesh):
float8_tensor = hp_tensor_and_scale_to_float8(
self._tensor,
self._static_scale,
torch.float8_e4m3fn,
self._linear_mm_config,
GemmInputRole.WEIGHT,
)
return (float8_tensor._data,), (float8_tensor._scale,)
def fsdp_post_all_gather(
self,
all_gather_outputs: Tuple[torch.Tensor, ...],
metadata: Any,
param_dtype: torch.dtype,
*,
out: Optional[torch.Tensor] = None,
):
(data,) = all_gather_outputs
(scale,) = metadata
if out is not None:
from torch.distributed._tensor import DTensor
if isinstance(out, Float8Tensor):
out._scale = scale
elif isinstance(out, DTensor) and isinstance(
out._local_tensor, Float8Tensor
):
out._local_tensor._scale = scale
else:
raise RuntimeError(
f"out must be a Float8Tensor or DTensor(_local_tensor=Float8Tensor), but got {out}"
)
return
return Float8Tensor(
data,
scale,
param_dtype,
self._linear_mm_config,
gemm_input_role=GemmInputRole.WEIGHT,
), (data,)