-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathtpu_estimator.py
3522 lines (2932 loc) · 136 KB
/
tpu_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===================================================================
"""TPUEstimator class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import os
import signal
import sys
import threading
import time
import numpy as np
import six
from six.moves import queue as Queue # pylint: disable=redefined-builtin
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.contrib.tpu.proto import compilation_result_pb2 as tpu_compilation_result
from tensorflow.contrib.tpu.python.tpu import tensor_tracer
from tensorflow.contrib.tpu.python.ops import tpu_ops
from tensorflow.contrib.tpu.python.tpu import error_handling
from tensorflow.contrib.tpu.python.tpu import session_support
from tensorflow.contrib.tpu.python.tpu import tpu
from tensorflow.contrib.tpu.python.tpu import tpu_config
from tensorflow.contrib.tpu.python.tpu import tpu_context
from tensorflow.contrib.tpu.python.tpu import tpu_feed
from tensorflow.contrib.tpu.python.tpu import training_loop
from tensorflow.contrib.tpu.python.tpu import util as util_lib
from tensorflow.contrib.training.python.training import hparam
from tensorflow.core.framework import variable_pb2
from tensorflow.core.framework.summary_pb2 import Summary
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.client import session as tf_session
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import nest as data_nest
from tensorflow.python.estimator import estimator as estimator_lib
from tensorflow.python.estimator import model_fn as model_fn_lib
from tensorflow.python.estimator.export import export_output as export_output_lib
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import summary_ops_v2 as contrib_summary
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.summary import summary
from tensorflow.python.training import basic_session_run_hooks
from tensorflow.python.training import evaluation
from tensorflow.python.training import session_run_hook
from tensorflow.python.training import training
from tensorflow.python.training import training_util
from tensorflow.python.util import function_utils
from tensorflow.python.util import nest
from tensorflow.python.util import tf_inspect
_INITIAL_LOSS = 1e7
_ZERO_LOSS = 0.
_TPU_ESTIMATOR = 'custom_tpu_estimator'
_ITERATIONS_PER_LOOP_VAR = 'iterations_per_loop'
_BATCH_SIZE_KEY = 'batch_size'
_CTX_KEY = 'context'
_USE_TPU_KEY = 'use_tpu'
_CROSS_REPLICA_SUM_OP = 'CrossReplicaSum'
_ONE_GIGABYTE = 1024 * 1024 * 1024
_TPU_ENQUEUE_OPS = '_tpu_enqueue_ops'
_TPU_TRAIN_OP = '_tpu_train_op'
_REWRITE_FOR_INFERENCE_MODE = '_rewrite_for_inference'
# Ideally _USE_TPU_KEY should be reserved as well. However there are already
# models that make use of this key, thus it can not be reserved now to prevent
# breakage. In the long run, we would like to mitigate this by migrating models
# off of using _USE_TPU_KEY.
_RESERVED_PARAMS_KEYS = [_BATCH_SIZE_KEY, _CTX_KEY]
# TODO(b/65703635): Flip the value and remove all dead code. Currently, this is
# only used for per-core based deployments. For per-host based pipelines, if a
# user returns a Dataset instance it will be automatically wrapped in a
# tf.while_loop (This can be disabled by returning features and labels
# explicitly).
_WRAP_INPUT_FN_INTO_WHILE_LOOP = False
ops.register_proto_function(
'{}_{}'.format(_TPU_ESTIMATOR, _ITERATIONS_PER_LOOP_VAR),
proto_type=variable_pb2.VariableDef,
to_proto=resource_variable_ops._to_proto_fn, # pylint: disable=protected-access
from_proto=resource_variable_ops._from_proto_fn) # pylint: disable=protected-access
def _is_iterable(obj):
"""A Python 2 and 3 compatible util to check whether `obj` is iterable."""
try:
iter(obj)
return True
except TypeError:
return False
def _create_global_step(graph):
graph = graph or ops.get_default_graph()
if training.get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
return variable_scope.get_variable(
ops.GraphKeys.GLOBAL_STEP,
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
use_resource=True,
collections=[ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.GLOBAL_STEP])
def _create_or_get_iterations_per_loop():
"""Creates or gets the iterations_per_loop variable.
In TPUEstimator, the user provided computation, the model_fn, is wrapped
inside a tf.while_loop for peak performance. The iterations of the loop are
specified by this variable, which adjusts its value on the CPU after each TPU
program execution and before the next TPU execution.
The purpose of using a variable, rather then a constant, is to allow
TPUEstimator adapt the TPU training iterations according to the final steps
specified by users. For example, if the user sets the iterations_per_loop as 4
in TPUConfig and steps as 10 in TPUEstimator.train(), the iterations_per_loop
variable will have the following value before each TPU training.
- 1-th TPU execution: iterations_per_loop = 4
- 2-th TPU execution: iterations_per_loop = 4
- 3-th TPU execution: iterations_per_loop = 2
As model_fn increases the global step once per train_op invocation, the global
step is 10 after all TPU executions, matching the steps=10 inputs passed in by
users.
Returns:
A TF non-trainable resource variable.
Raises:
RuntimeError: If multi iterations_per_loop variables were found.
"""
graph = ops.get_default_graph()
collection_name = '{}_{}'.format(_TPU_ESTIMATOR, _ITERATIONS_PER_LOOP_VAR)
iter_vars = graph.get_collection(collection_name)
if len(iter_vars) == 1:
return iter_vars[0]
elif len(iter_vars) > 1:
raise RuntimeError('Multiple iterations_per_loop_var in collection.')
with ops.colocate_with(training_util.get_global_step()):
with variable_scope.variable_scope(
_TPU_ESTIMATOR, reuse=variable_scope.AUTO_REUSE):
return variable_scope.get_variable(
_ITERATIONS_PER_LOOP_VAR,
initializer=init_ops.zeros_initializer(),
shape=[],
dtype=dtypes.int32,
trainable=False,
collections=[collection_name, ops.GraphKeys.LOCAL_VARIABLES],
use_resource=True)
def _sync_variables_ops(ctx):
"""Create varriables synchronization ops.
Gets the variables back from TPU nodes. This means the variables updated
by TPU will now be *synced* to host memory.
In BROADCAST mode, we skip this sync since the variables are ususally too
big to transmit via RPC.
Args:
ctx: A `_InternalTPUContext` instance with mode.
Returns:
A list of sync ops.
"""
if not ctx.is_input_broadcast_with_iterators():
return [
array_ops.check_numerics(v.read_value(),
'Gradient for %s is NaN' % v.name).op
for v in variables.trainable_variables()
]
else:
return [control_flow_ops.no_op()]
def _increase_eval_step_op(iterations_per_loop):
"""Returns an op to increase the eval step for TPU evaluation.
Args:
iterations_per_loop: Tensor. The number of eval steps running in TPU system
before returning to CPU host for each `Session.run`.
Returns:
An operation
"""
eval_step = evaluation._get_or_create_eval_step() # pylint: disable=protected-access
# Estimator evaluate increases 1 by default. So, we increase the difference.
return state_ops.assign_add(
eval_step,
math_ops.cast(iterations_per_loop - 1, dtype=eval_step.dtype),
use_locking=True)
def _extract_key_names(tensor_or_dict):
if isinstance(tensor_or_dict, dict):
return sorted(tensor_or_dict.keys())
return []
class _SIGNAL(object):
"""Signal used to control the thread of infeed/outfeed.
All preserved signals must be negative numbers. Positive numbers are used to
indicate the number of iterations for next training/evaluation loop.
"""
NEXT_BATCH = -1
STOP = -2
class TPUEstimatorSpec(model_fn_lib._TPUEstimatorSpec): # pylint: disable=protected-access
"""Ops and objects returned from a `model_fn` and passed to `TPUEstimator`.
See `EstimatorSpec` for `mode`, `predictions`, `loss`, `train_op`, and
`export_outputs`.
For evaluation, `eval_metrics `is a tuple of `metric_fn` and `tensors`, where
`metric_fn` runs on CPU to generate metrics and `tensors` represents the
`Tensor`s transferred from TPU system to CPU host and passed to `metric_fn`.
To be precise, TPU evaluation expects a slightly different signature from the
`tf.estimator.Estimator`. While `EstimatorSpec.eval_metric_ops` expects a
dict, `TPUEstimatorSpec.eval_metrics` is a tuple of `metric_fn` and `tensors`.
The `tensors` could be a list of `Tensor`s or dict of names to `Tensor`s. The
`tensors` usually specify the model logits, which are transferred back from
TPU system to CPU host. All tensors must have be batch-major, i.e., the batch
size is the first dimension. Once all tensors are available at CPU host from
all shards, they are concatenated (on CPU) and passed as positional arguments
to the `metric_fn` if `tensors` is list or keyword arguments if `tensors` is
a dict. `metric_fn` takes the `tensors` and returns a dict from metric string
name to the result of calling a metric function, namely a `(metric_tensor,
update_op)` tuple. See `TPUEstimator` for MNIST example how to specify the
`eval_metrics`.
`scaffold_fn` is a function running on CPU to generate the `Scaffold`. This
function should not capture any Tensors in `model_fn`.
`host_call` is a tuple of a `function` and a list or dictionary of `tensors`
to pass to that function and returns a list of Tensors. `host_call` currently
works for train() and evaluate(). The Tensors returned by the function is
executed on the CPU on every step, so there is communication overhead when
sending tensors from TPU to CPU. To reduce the overhead, try reducing the
size of the tensors. The `tensors` are concatenated along their major (batch)
dimension, and so must be >= rank 1. The `host_call` is useful for writing
summaries with `tf.contrib.summary.create_file_writer`.
"""
def __new__(cls,
mode,
predictions=None,
loss=None,
train_op=None,
eval_metrics=None,
export_outputs=None,
scaffold_fn=None,
host_call=None,
training_hooks=None,
evaluation_hooks=None,
prediction_hooks=None):
"""Creates a validated `TPUEstimatorSpec` instance."""
host_calls = {}
if eval_metrics is not None:
host_calls['eval_metrics'] = eval_metrics
if host_call is not None:
host_calls['host_call'] = host_call
_OutfeedHostCall.validate(host_calls)
training_hooks = tuple(training_hooks or [])
evaluation_hooks = tuple(evaluation_hooks or [])
prediction_hooks = tuple(prediction_hooks or [])
for hook in training_hooks + evaluation_hooks + prediction_hooks:
if not isinstance(hook, session_run_hook.SessionRunHook):
raise TypeError('All hooks must be SessionRunHook instances, given: {}'
.format(hook))
return super(TPUEstimatorSpec, cls).__new__(
cls,
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metrics=eval_metrics,
export_outputs=export_outputs,
scaffold_fn=scaffold_fn,
host_call=host_call,
training_hooks=training_hooks,
evaluation_hooks=evaluation_hooks,
prediction_hooks=prediction_hooks)
def as_estimator_spec(self):
"""Creates an equivalent `EstimatorSpec` used by CPU train/eval."""
host_calls = {}
if self.eval_metrics is not None:
host_calls['eval_metrics'] = self.eval_metrics
if self.host_call is not None:
host_calls['host_call'] = self.host_call
host_call_ret = _OutfeedHostCall.create_cpu_hostcall(host_calls)
eval_metric_ops = None
if self.eval_metrics is not None:
eval_metric_ops = host_call_ret['eval_metrics']
hooks = None
if self.host_call is not None:
hooks = [_OutfeedHostCallHook(host_call_ret['host_call'])]
if tensor_tracer.TensorTracer.is_enabled():
tt = tensor_tracer.TensorTracer()
tracing_calls = tt.trace_cpu(ops.get_default_graph())
tracing_call_ret = _OutfeedHostCall.create_cpu_hostcall(tracing_calls)
tracing_functions = tracing_call_ret.values()
if tracing_functions:
if hooks:
hooks.extend([_OutfeedHostCallHook(tracing_functions)])
else:
hooks = [_OutfeedHostCallHook(tracing_functions)]
hooks = tuple(hooks or [])
scaffold = self.scaffold_fn() if self.scaffold_fn else None
return model_fn_lib.EstimatorSpec(
mode=self.mode,
predictions=self.predictions,
loss=self.loss,
train_op=self.train_op,
eval_metric_ops=eval_metric_ops,
export_outputs=self.export_outputs,
scaffold=scaffold,
training_hooks=self.training_hooks + hooks,
evaluation_hooks=self.evaluation_hooks + hooks,
prediction_hooks=self.prediction_hooks + hooks)
class _OpQueueContext(object):
"""Manages work queue and thread for a infeed/outfeed thread."""
def __init__(self, name, target, args):
self._name = name
self._queue = Queue.Queue()
args = (self,) + args
self._thread = threading.Thread(name=name, target=target, args=args)
self._thread.daemon = True
self._thread.start()
def stop(self):
self._queue.put(_SIGNAL.STOP)
def send_next_batch_signal(self, iterations):
self._queue.put(iterations)
def read_iteration_counts(self):
while True:
iterations = self._queue.get(block=True)
logging.debug('%s read iterations %s', self._name, iterations)
if iterations == _SIGNAL.STOP:
logging.info('%s received shutdown signal, stopping.', self._name)
return
yield iterations
def join(self):
logging.info('Shutting down %s thread.', self._name)
self.stop()
self._thread.join()
class _OpSignalOnceQueueContext(_OpQueueContext):
"""Manages work queue and thread for a infeed/outfeed thread.
This subclass only signals once.
"""
def __init__(self, name, target, args):
super(_OpSignalOnceQueueContext, self).__init__(name, target, args)
self._has_signaled = False
def send_next_batch_signal(self, iterations):
if not self._has_signaled:
self._queue.put(iterations)
self._has_signaled = True
class TPUInfeedOutfeedSessionHook(session_run_hook.SessionRunHook):
"""A Session hook setting up the TPU initialization, infeed, and outfeed.
This hook does two major things:
1. initialize and shutdown TPU system.
2. launch and join the threads for infeed enqueue and (optional) outfeed
dequeue.
"""
def __init__(self,
ctx,
enqueue_ops,
dequeue_ops,
tpu_compile_op,
run_infeed_loop_on_coordinator=True,
rendezvous=None,
master=None,
session_config=None):
self._master_job = ctx.master_job
self._enqueue_ops = enqueue_ops
self._dequeue_ops = dequeue_ops
self._rendezvous = rendezvous
self._master = master
self._session_config = session_config
self._run_infeed_loop_on_coordinator = run_infeed_loop_on_coordinator
self._initial_infeed_sleep_secs = (
ctx.config.tpu_config.initial_infeed_sleep_secs)
self._feed_error = None
self._finished = False
self._should_initialize_tpu = True
self._tpu_compile_op = tpu_compile_op
def begin(self):
logging.info('TPU job name %s', self._master_job)
self._iterations_per_loop_var = _create_or_get_iterations_per_loop()
self._init_ops = []
if self._should_initialize_tpu:
self._finalize_ops = [tpu.shutdown_system(job=self._master_job)]
else:
self._finalize_ops = []
summary_writer_init_ops = contrib_summary.summary_writer_initializer_op()
self._init_ops.extend(summary_writer_init_ops)
# Get all the writer resources from the initializer, so we know what to
# flush.
for op in summary_writer_init_ops:
self._finalize_ops.append(contrib_summary.flush(writer=op.inputs[0]))
def _run_infeed(self, queue_ctx, session):
logging.info('Starting infeed thread controller.')
if self._initial_infeed_sleep_secs:
logging.info('Infeed thread sleeping for %d seconds.',
self._initial_infeed_sleep_secs)
time.sleep(self._initial_infeed_sleep_secs)
logging.info('Infeed thread starting after sleep')
with self._rendezvous.catch_errors(source='infeed', session=session):
if self._run_infeed_loop_on_coordinator:
for count, steps in enumerate(queue_ctx.read_iteration_counts()):
for i in xrange(steps):
logging.debug('Infeed enqueue for iteration (%d, %d)', count, i)
session.run(self._enqueue_ops)
else:
for _ in queue_ctx.read_iteration_counts():
session.run(self._enqueue_ops)
logging.info('Infeed thread finished, shutting down.')
def _run_outfeed(self, queue_ctx, session):
logging.info('Starting outfeed thread controller.')
with self._rendezvous.catch_errors(source='outfeed', session=session):
for count, steps in enumerate(queue_ctx.read_iteration_counts()):
for i in xrange(steps):
logging.debug('Outfeed dequeue for iteration (%d, %d)', count, i)
session.run(self._dequeue_ops)
logging.info('Outfeed thread finished, shutting down.')
def _create_infeed_controller(self, name, target, args):
return _OpQueueContext(name=name, target=target, args=args)
def _assertCompilationSucceeded(self, result, coord):
proto = tpu_compilation_result.CompilationResultProto()
proto.ParseFromString(result)
if proto.status_error_message:
logging.error('Compilation failed: {}'.format(proto.status_error_message))
coord.request_stop()
else:
logging.info('Compilation succeeded')
def after_create_session(self, session, coord):
if self._should_initialize_tpu:
logging.info('Init TPU system')
start = time.time()
with ops.Graph().as_default():
with tf_session.Session(
self._master, config=self._session_config) as sess:
sess.run(tpu.initialize_system(job=self._master_job))
logging.info('Initialized TPU in %d seconds', time.time() - start)
session.run(self._init_ops,
options=config_pb2.RunOptions(timeout_in_ms=5 * 60 * 1000))
if os.environ.get('TPU_SPLIT_COMPILE_AND_EXECUTE', '') == '1':
logging.info('Compiling user program: this may take a while...')
self._assertCompilationSucceeded(session.run(self._tpu_compile_op), coord)
self._infeed_controller = self._create_infeed_controller(
name='InfeedController', target=self._run_infeed, args=(session,))
self._outfeed_controller = _OpQueueContext(
name='OutfeedController', target=self._run_outfeed, args=(session,))
# Enable the worker watchdog to terminate workers on coordinator exit.
watchdog_timeout = int(os.environ.get('TF_TPU_WATCHDOG_TIMEOUT', '0'))
if watchdog_timeout > 0:
session_support.start_worker_watchdog(session,
shutdown_timeout=watchdog_timeout)
def before_run(self, run_context):
self._feed_error = None
iterations = run_context.session.run(self._iterations_per_loop_var)
logging.info('Enqueue next (%d) batch(es) of data to infeed.', iterations)
self._infeed_controller.send_next_batch_signal(iterations)
logging.info('Dequeue next (%d) batch(es) of data from outfeed.',
iterations)
self._outfeed_controller.send_next_batch_signal(iterations)
def end(self, session):
self._finished = True
logging.info('Stop infeed thread controller')
self._infeed_controller.join()
self._rendezvous.record_done('infeed')
logging.info('Stop output thread controller')
self._outfeed_controller.join()
self._rendezvous.record_done('outfeed')
logging.info('Shutdown TPU system.')
session.run(self._finalize_ops)
class TPUInfeedOutfeedSessionHookForPrediction(TPUInfeedOutfeedSessionHook):
def __init__(self, ctx, enqueue_ops, dequeue_ops, tpu_compile_op,
rendezvous=None, master=None, session_config=None):
super(TPUInfeedOutfeedSessionHookForPrediction, self).__init__(
ctx,
enqueue_ops,
dequeue_ops,
tpu_compile_op=tpu_compile_op,
run_infeed_loop_on_coordinator=False,
rendezvous=rendezvous,
master=master,
session_config=session_config)
def _create_infeed_controller(self, name, target, args):
return _OpSignalOnceQueueContext(name=name, target=target, args=args)
class _TPUStopAtStepHook(session_run_hook.SessionRunHook):
"""Hook that requests stop at a specified step.
This hook is similar to the `session_run_hook._StopAfterNEvalsHook` with
following differences for TPU training:
1. This hook sets the variable for iterations_per_loop, which is used by
`TPUInfeedOutfeedSessionHook` to control the iterations for infeed/outfeed.
As the hook execution order is not guaranteed, the variable update is
handled in `after_create_session` and `after_run` as
`TPUInfeedOutfeedSessionHook` reads the variable value in `before_run`.
2. For each training loop (session.run), the global step could be increased
multiple times on TPU. The global step tensor value will be explicitly read
again in `after_run` to ensure the latest value is retrieved to avoid race
condition.
"""
def __init__(self, iterations, num_steps=None, last_step=None):
"""Initializes a `StopAtStepHook`.
Args:
iterations: The number of iterations to run optimizer per training loop.
num_steps: Number of steps to execute.
last_step: Step after which to stop.
Raises:
ValueError: If one of the arguments is invalid.
"""
if num_steps is None and last_step is None:
raise ValueError('One of num_steps or last_step must be specified.')
if num_steps is not None and last_step is not None:
raise ValueError('Only one of num_steps or last_step can be specified.')
self._num_steps = num_steps
self._last_step = last_step
self._iterations = iterations
def _next_iterations(self, global_step, last_step):
gap = last_step - global_step
return min(gap, self._iterations)
def begin(self):
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError('Global step should be created.')
self._iterations_per_loop_var = _create_or_get_iterations_per_loop()
def after_create_session(self, session, coord):
global_step = session.run(self._global_step_tensor)
if self._last_step is None:
self._last_step = global_step + self._num_steps
iterations = self._next_iterations(global_step, self._last_step)
self._iterations_per_loop_var.load(iterations, session=session)
def after_run(self, run_context, run_values):
# Global step cannot be retrieved via SessionRunArgs and before_run due to
# race condition.
global_step = run_context.session.run(self._global_step_tensor)
if global_step >= self._last_step:
run_context.request_stop()
else:
iterations = self._next_iterations(global_step, self._last_step)
self._iterations_per_loop_var.load(
iterations, session=run_context.session)
class _SetEvalIterationsHook(session_run_hook.SessionRunHook):
"""Hook that requests stop at a specified step."""
def __init__(self, num_steps):
"""Initializes a `_SetEvalIterationsHook`.
Args:
num_steps: Number of steps to execute.
"""
self._num_steps = num_steps
def begin(self):
self._iterations_per_loop_var = _create_or_get_iterations_per_loop()
def after_create_session(self, session, coord):
self._iterations_per_loop_var.load(self._num_steps, session=session)
class _StoppingPredictHook(session_run_hook.SessionRunHook):
"""Hook that requests stop according to the stopping signal in prediction."""
def __init__(self, scalar_stopping_signal):
self._scalar_stopping_signal = scalar_stopping_signal
def begin(self):
self._iterations_per_loop_var = _create_or_get_iterations_per_loop()
def after_create_session(self, session, coord):
# This is not necessary as we do not run infeed enqueue and outfeed dequeue
# in side threads for prediction model. But it makes the
# TPUInfeedOutfeedSessionHook prints nice message.
self._iterations_per_loop_var.load(1, session=session)
def before_run(self, run_context):
return session_run_hook.SessionRunArgs(self._scalar_stopping_signal)
def after_run(self, run_context, run_values):
_ = run_context
scalar_stopping_signal = run_values.results
if _StopSignals.should_stop(scalar_stopping_signal):
# NOTE(xiejw): In prediction, stopping signals are inserted for each
# batch. And we append one more batch to signal the system it should stop.
# The data flow might look like
#
# batch 0: images, labels, stop = 0 (user provided)
# batch 1: images, labels, stop = 0 (user provided)
# ...
# batch 99: images, labels, stop = 0 (user provided)
# batch 100: images, labels, stop = 1 (TPUEstimator appended)
#
# where the final batch (id = 100) is appended by TPUEstimator, so we
# should drop it before returning the predictions to user.
# To achieve that, we throw the OutOfRangeError in after_run. Once
# Monitored Session sees this error in SessionRunHook.after_run, the
# "current" prediction, i.e., batch with id=100, will be discarded
# immediately
raise errors.OutOfRangeError(None, None, 'Stopped by stopping signal.')
def generate_per_core_enqueue_ops_fn_for_host(
ctx, input_fn, inputs_structure_recorder, host_device, host_id):
"""Generates infeed enqueue ops for per-core input_fn on a single host."""
captured_infeed_queue = _CapturedObject()
tpu_ordinal_function_impl = ctx.tpu_ordinal_function(host_id)
def enqueue_ops_fn():
"""A fn returns enqueue_ops."""
num_cores_per_host = ctx.num_of_cores_per_host
per_host_sharded_inputs = []
for core_ordinal in range(num_cores_per_host):
with ops.name_scope('ordinal_%d' % (core_ordinal)):
user_context = tpu_context.TPUContext(
internal_ctx=ctx,
input_device=host_device,
invocation_index=host_id * ctx.num_of_cores_per_host + core_ordinal)
inputs = _Inputs.from_input_fn(input_fn(user_context))
if inputs.is_dataset:
raise TypeError(
'`input_fn` returning `Dataset` is not yet supported in '
'per-Core input pipeline deployment yet. Please set '
'TPUConfig.per_host_input_for_training to True or return '
'`features` and `labels` from `input_fn`')
features, labels = inputs.features_and_labels()
inputs_structure_recorder.validate_and_record_structure(
features, labels)
flattened_inputs = (
inputs_structure_recorder.flatten_features_and_labels(
features, labels))
per_host_sharded_inputs.append(flattened_inputs)
infeed_queue = tpu_feed.InfeedQueue(
number_of_tuple_elements=len(per_host_sharded_inputs[0]))
captured_infeed_queue.capture(infeed_queue)
per_host_enqueue_ops = infeed_queue.generate_enqueue_ops(
per_host_sharded_inputs, tpu_ordinal_function=tpu_ordinal_function_impl)
return per_host_enqueue_ops
return enqueue_ops_fn, captured_infeed_queue
def generate_per_host_enqueue_ops_fn_for_host(
ctx, input_fn, inputs_structure_recorder, batch_axis, device, host_id):
"""Generates infeed enqueue ops for per-host input_fn on a single host."""
captured_infeed_queue = _CapturedObject()
dataset_initializer = None
with ops.device(device):
user_context = tpu_context.TPUContext(
internal_ctx=ctx, input_device=device, invocation_index=host_id)
inputs = _Inputs.from_input_fn(input_fn(user_context))
is_dataset = inputs.is_dataset
if ctx.mode == model_fn_lib.ModeKeys.PREDICT:
if not is_dataset:
raise TypeError(
'For mode PREDICT, `input_fn` must return `Dataset` instead of '
'`features` and `labels`.')
if batch_axis is not None:
raise TypeError('For mode PREDICT, batch_axis is not supported yet.')
inputs = _InputsWithStoppingSignals(
dataset=inputs.dataset,
batch_size=ctx.batch_size_for_input_fn,
add_padding=True)
if is_dataset:
dataset_initializer = inputs.dataset_initializer()
tpu_ordinal_function_impl = ctx.tpu_ordinal_function(host_id)
def enqueue_ops_fn():
"""A Fn returning the TPU infeed enqueue ops.
By providing as a Fn, it can be invoked inside the tf.while_loop such that
the input pipeline for multiple iterations can be executed by one
Session.run call.
Returns:
list of dict of ops.
"""
with ops.device(device):
num_of_replicas_per_host = ctx.num_of_replicas_per_host
# Convert user input to features and labels. If the user returns a
# dataset, it is initialized and the features and labels extracted via
# `dataset.iterator.get_next()`
features, labels = inputs.features_and_labels()
signals = inputs.signals()
inputs_structure_recorder.validate_and_record_structure(features, labels)
unsharded_tensor_list = (
inputs_structure_recorder.flatten_features_and_labels(
features, labels, signals))
infeed_queue = tpu_feed.InfeedQueue(
tuple_types=[t.dtype for t in unsharded_tensor_list],
tuple_shapes=[t.shape for t in unsharded_tensor_list],
shard_dimensions=batch_axis)
captured_infeed_queue.capture(infeed_queue)
infeed_queue.set_number_of_shards(num_of_replicas_per_host)
per_host_enqueue_ops = (
infeed_queue.split_inputs_and_generate_enqueue_ops(
unsharded_tensor_list,
placement_function=lambda x: device,
tpu_ordinal_function=tpu_ordinal_function_impl))
if signals is None:
return per_host_enqueue_ops
else:
return {
'ops': per_host_enqueue_ops,
'signals': signals,
}
return enqueue_ops_fn, captured_infeed_queue, dataset_initializer
def generate_per_host_v2_enqueue_ops_fn_for_host(
ctx, input_fn, inputs_structure_recorder, device, host_id):
"""Generates infeed enqueue ops for per-host input_fn on a single host."""
captured_infeed_queue = _CapturedObject()
dataset_initializer = None
with ops.device(device):
user_context = tpu_context.TPUContext(
internal_ctx=ctx, input_device=device, invocation_index=host_id)
inputs = _Inputs.from_input_fn(input_fn(user_context))
is_dataset = inputs.is_dataset
if not is_dataset:
raise TypeError('`input_fn` must return a `Dataset` for the PER_HOST_V2 '
'input pipeline configuration.')
if ctx.mode == model_fn_lib.ModeKeys.PREDICT:
inputs = _InputsWithStoppingSignals(
dataset=inputs.dataset,
batch_size=ctx.batch_size_for_input_fn,
add_padding=True,
num_invocations_per_step=ctx.num_of_replicas_per_host)
dataset_initializer = inputs.dataset_initializer()
tpu_ordinal_function_impl = ctx.tpu_ordinal_function(host_id)
def enqueue_ops_fn():
"""Generates the per_host enqueue ops."""
control_deps = []
per_host_sharded_inputs = []
num_replicas_per_host = ctx.num_of_replicas_per_host
cached_signals = None
with ops.device(device):
if not inputs.is_dataset:
raise TypeError('`input_fn` must return a `Dataset` for this mode.')
for _ in range(num_replicas_per_host):
# Use control dependencies to ensure a deterministic ordering.
with ops.control_dependencies(control_deps):
features, labels = inputs.features_and_labels() # Calls get_next()
signals = inputs.signals()
# All the replicas share the replica 0's stopping singal.
# This avoids inconsistent state among different model replcias.
if cached_signals:
signals['stopping'] = cached_signals['stopping']
else:
cached_signals = signals
inputs_structure_recorder.validate_and_record_structure(
features, labels)
flattened_inputs = (
inputs_structure_recorder.flatten_features_and_labels(
features, labels, signals))
control_deps.extend(flattened_inputs)
per_host_sharded_inputs.append(flattened_inputs)
if inputs_structure_recorder.flattened_input_dims:
input_partition_dims = inputs_structure_recorder.flattened_input_dims
if signals:
input_partition_dims += [None] * len(signals)
# pylint: disable=protected-access
infeed_queue = tpu_feed._PartitionedInfeedQueue(
number_of_tuple_elements=len(per_host_sharded_inputs[0]),
host_id=host_id,
input_partition_dims=input_partition_dims,
device_assignment=ctx.device_assignment)
per_host_enqueue_ops = infeed_queue.generate_enqueue_ops(
per_host_sharded_inputs)
else:
infeed_queue = tpu_feed.InfeedQueue(
number_of_tuple_elements=len(per_host_sharded_inputs[0]))
per_host_enqueue_ops = infeed_queue.generate_enqueue_ops(
per_host_sharded_inputs,
tpu_ordinal_function=tpu_ordinal_function_impl)
captured_infeed_queue.capture(infeed_queue)
if signals is None:
return per_host_enqueue_ops
else:
return {
'ops': per_host_enqueue_ops,
'signals': signals,
}
return enqueue_ops_fn, captured_infeed_queue, dataset_initializer
def generate_broadcast_enqueue_ops_fn(ctx, input_fn, inputs_structure_recorder,
num_hosts):
"""Generates infeed enqueue ops for one input_fn on all the hosts."""
captured_infeed_queue = _CapturedObject()
dataset_initializer = None
device_0 = ctx.tpu_host_placement_function(host_id=0)
with ops.device(device_0):
user_context = tpu_context.TPUContext(
internal_ctx=ctx, input_device=device_0, invocation_index=0)
inputs = _Inputs.from_input_fn(input_fn(user_context))
is_dataset = inputs.is_dataset
if ctx.mode == model_fn_lib.ModeKeys.PREDICT:
if not is_dataset:
raise TypeError(
'For mode PREDICT, `input_fn` must return `Dataset` instead of '
'`features` and `labels`.')
inputs = _InputsWithStoppingSignals(
dataset=inputs.dataset,
batch_size=ctx.batch_size_for_input_fn,
add_padding=True)
if is_dataset:
dataset_initializer = inputs.dataset_initializer()
num_replicas_per_host = ctx.num_of_replicas_per_host
def tpu_ordinal_function_impl(replica_id):
if ctx.device_assignment:
return ctx.device_assignment.tpu_ordinal(replica=replica_id)
else:
return replica_id % num_replicas_per_host
def device_function_impl(replica_id):
return ctx.tpu_host_placement_function(replica_id=replica_id)
def enqueue_ops_fn():
"""Generates enqueue ops for all the hosts."""
broadcasted_inputs = []
flattened_inputs = None # Cache result from input_fn.
signals = None
for host_id in xrange(num_hosts):
with ops.device(ctx.tpu_host_placement_function(host_id=host_id)):
for _ in xrange(ctx.num_of_replicas_per_host):
# Note: input_fn is only called once at host 0 for the first replica.
# The features and labels returned from that invocation are
# broadcasted to other replicas(including the replicas on other
# hosts).
if flattened_inputs is None:
features, labels = inputs.features_and_labels() # Calls get_next()
signals = inputs.signals()
inputs_structure_recorder.validate_and_record_structure(
features, labels)
flattened_inputs = (
inputs_structure_recorder.flatten_features_and_labels(
features, labels, signals))
broadcasted_inputs.append(flattened_inputs)
infeed_queue = tpu_feed.InfeedQueue(
number_of_tuple_elements=len(broadcasted_inputs[0]))
captured_infeed_queue.capture(infeed_queue)
enqueue_ops = infeed_queue.generate_enqueue_ops(
broadcasted_inputs,
tpu_ordinal_function=tpu_ordinal_function_impl,
placement_function=device_function_impl)
if signals is None:
return enqueue_ops
else:
return {
'ops': enqueue_ops,
'signals': signals,
}
return enqueue_ops_fn, captured_infeed_queue, dataset_initializer
class _InputPipeline(object):
"""`_InputPipeline` handles invoking `input_fn` and piping to infeed queue.
`_InputPipeline` abstracts the per-core/per-host `input_fn` invocation from
call site. To be precise, based on the configuration in
`_InternalTPUContext`, it invokes `input_fn` for all cores (usually
multi-host TPU training) or for one host (usually for single-host TPU
evaluation), and sends all `features` and `labels` returned by `input_fn` to
TPU infeed. For per-core invocation, `features` and `labels` are piped to
infeed directly, one tuple for each core. For per-host invocation, `features`
and `labels` are split at host (with respect to `batch_axis`) and piped to all
cores accordingly.
In addition, flatten/unflatten are handled by `_InputPipeline` also. Model
inputs returned by the `input_fn` can have one of the following forms: