-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
400 lines (340 loc) · 17.3 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os, math
from multiprocessing import Pool
from pyspark.sql import SparkSession
from collections import Counter
from datetime import timedelta
import stanza
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
import dask.dataframe as dd
from dask.multiprocessing import get
from instrument import *
from article import *
class AnalyticEngine:
def __init__(self, symbol_map, startdate, enddate, interval, spark: SparkSession, data_dir='./data'):
self.symbol_map = symbol_map
self.startdate = startdate
self.enddate = enddate
self.interval = interval
self.instruments = list()
self.histories = list()
self.data = dict()
self.data_dir = data_dir
self.source_df = None
self.spark = spark
def graph(self, symbols, window=7):
self.score_and_predict(symbols, window=window)
for symbol in symbols:
fig, axes = plt.subplots(2)
df_dict = self.data[symbol]
price_series = df_dict['timeline_df']['open'].plot.line(ax=axes[0])
title_sentiment_series = df_dict['timeline_df']['title_score'].plot.line(ax=axes[1])
text_sentiment_series = df_dict['timeline_df']['text_score'].plot.line(ax=axes[1])
plt.legend()
plt.show()
def analyze_sentiment_distribution(self, symbols, window=7, info='', save_fig=False, show_fig=False):
title_scores = []
text_scores = []
for symbol in symbols:
timeline_df = self.data[symbol]['timeline_df']
def analyze_accuracy(self, symbols, window=7, info='', save_fig=False, show_fig=False):
'''
analyze accuracies for each symbol given a window length
'''
def safe_divide(a, b):
if b == 0:
return 0
return a / b
res = dict()
self.score_and_predict(symbols, window=window)
for symbol in symbols:
res[symbol] = dict()
timeline_df = self.data[symbol]['timeline_df']
title_pos_correct = timeline_df[(timeline_df['title_prediction'] == 'buy') & (timeline_df['title_result'] == 1)].shape[0]
title_neg_correct = timeline_df[(timeline_df['title_prediction'] == 'sell') & (timeline_df['title_result'] == 1)].shape[0]
title_hold_correct = timeline_df[(timeline_df['title_prediction'] == 'hold') & (timeline_df['title_result'] == 1)].shape[0]
title_correct = title_pos_correct + title_neg_correct + title_hold_correct
text_pos_correct = timeline_df[(timeline_df['text_prediction'] == 'buy') & (timeline_df['text_result'] == 1)].shape[0]
text_neg_correct = timeline_df[(timeline_df['text_prediction'] == 'sell') & (timeline_df['text_result'] == 1)].shape[0]
text_hold_correct = timeline_df[(timeline_df['text_prediction'] == 'hold') & (timeline_df['text_result'] == 1)].shape[0]
text_correct = text_pos_correct + text_neg_correct + text_hold_correct
res[symbol]['title_pos_accuracy'] = safe_divide(title_pos_correct, timeline_df[timeline_df['title_prediction'] == 'buy'].shape[0])
res[symbol]['title_neg_accuracy'] = safe_divide(title_neg_correct, timeline_df[timeline_df['title_prediction'] == 'sell'].shape[0])
res[symbol]['title_hold_accuracy'] = safe_divide(title_hold_correct, timeline_df[timeline_df['title_prediction'] == 'hold'].shape[0])
res[symbol]['title_accuracy'] = safe_divide(title_correct, timeline_df[timeline_df['title_prediction'] != ''].shape[0])
res[symbol]['text_pos_accuracy'] = safe_divide(text_pos_correct, timeline_df[timeline_df['text_prediction'] == 'buy'].shape[0])
res[symbol]['text_neg_accuracy'] = safe_divide(text_neg_correct, timeline_df[timeline_df['text_prediction'] == 'sell'].shape[0])
res[symbol]['text_hold_accuracy'] = safe_divide(text_hold_correct, timeline_df[timeline_df['text_prediction'] == 'hold'].shape[0])
res[symbol]['text_accuracy'] = safe_divide(text_correct, timeline_df[timeline_df['text_prediction'] != ''].shape[0])
print(res)
for accuracy in ['title_pos_accuracy', 'title_neg_accuracy', 'title_hold_accuracy', 'title_accuracy', 'text_pos_accuracy', 'text_neg_accuracy', 'text_hold_accuracy', 'text_accuracy']:
plt.bar(symbols, [res[symbol][accuracy] for symbol in symbols], label=accuracy)
plt.ylabel('accuracy % / 100')
plt.legend()
if save_fig:
plt.savefig(f'./chart/accuracy_{window}.jpg')
if show_fig:
plt.show()
plt.clf()
print('=> output of analyze_accuracy')
print(res)
return res
def analyze_accuracies(self, windows, save_fig=False, show_fig=False):
'''
analyze accuracies for each industry for each window length
'''
res_list = list()
for industry, symbols in self.symbol_map.items():
res = dict()
for window in windows:
subres = self.analyze_accuracy(symbols, window=window, info=f'window={window}')
res[window] = dict()
for accuracy in ['title_pos_accuracy', 'title_neg_accuracy', 'title_hold_accuracy', 'title_accuracy', 'text_pos_accuracy', 'text_neg_accuracy', 'text_hold_accuracy', 'text_accuracy']:
res[window][accuracy] = sum([subres[symbol][accuracy] for symbol in subres]) / len(subres)
for accuracy in ['title_pos_accuracy', 'title_neg_accuracy', 'title_hold_accuracy', 'title_accuracy', 'text_pos_accuracy', 'text_neg_accuracy', 'text_hold_accuracy', 'text_accuracy']:
plt.plot(windows, [res[window][accuracy] for window in windows], label=accuracy)
plt.ylabel('accuracy % / 100')
plt.xlabel('Window in days')
plt.legend()
if save_fig:
plt.savefig(f'./chart/accuracies_{industry}.jpg')
if show_fig:
plt.show()
plt.clf()
res_list.append(res)
print('=> output of analyze_accuracies')
print(res_list)
return res_list
def analyze_cov(self, symbols, window=7, info='', save_fig=False, show_fig=False):
'''
analyze covariance for each symbol given a window length
'''
res = dict()
res['price_title'] = []
res['price_text'] = []
res['title_text'] = []
self.score_and_predict(symbols, window=window)
for symbol in symbols:
df_dict = self.data[symbol]
res['price_title'].append((df_dict['timeline_df']['change'] * 10).cov(df_dict['timeline_df']['title_score']))
res['price_text'].append((df_dict['timeline_df']['change'] * 10).cov(df_dict['timeline_df']['text_score']))
res['title_text'].append((df_dict['timeline_df']['title_score'] * 10).cov(df_dict['timeline_df']['text_score']))
plt.bar(symbols, res['price_title'], label='price change and title_score covariance')
plt.bar(symbols, res['price_text'], label='price change and text_score covariance')
plt.bar(symbols, res['title_text'], label='title_score and text_score covariance')
plt.title(f'Covariance Analysis: window={window}, info={info}')
plt.ylabel('Covariance Normalized by N-1 (Unbiased Estimator)')
plt.legend()
if save_fig:
plt.savefig(f'./chart/cov_{window}.jpg')
if show_fig:
plt.show()
plt.clf()
print('=> output of analyze_cov')
print(res)
return res
def analyze_covs(self, windows, save_fig=False, show_fig=False):
'''
analyze covariance for each industry for each window length
'''
res_list = list()
for industry, symbols in self.symbol_map.items():
res = dict()
for window in windows:
covs = self.analyze_cov(symbols, window=window, info='for all symbols')
res[window] = dict()
for k in covs:
res[window][k] = sum(covs[k])
for k in ['price_text', 'price_title', 'title_text']:
plt.plot(windows, [res[window][k] for window in windows], label=k)
plt.ylabel(f'Covariance Sum for {len(windows)} window days')
plt.xlabel('Window in Days')
plt.legend()
if save_fig:
plt.savefig(f'./chart/covs_{industry}.jpg')
if show_fig:
plt.show()
plt.clf()
res_list.append(res)
print('=> output of analyze_covs')
print(res_list)
return res_list
def calc_score(self, currdate, article_df_col, article_df, timeline_df, window):
average = lambda scores: sum(scores) / len(scores) if len(scores) > 0 else None
article_count = 0
scores = []
days = [max(window - 3, 0), max(window - 2, 0), max(window - 1, 0), window, window + 1, window + 2, window + 3]
# days = list(range(window))
for i, day in enumerate(days):
article_links = None
try:
article_links = timeline_df.loc[currdate - timedelta(days=day)]['links']
except KeyError:
continue
if not article_links:
continue
for link in article_links:
try:
article = article_df.loc[link]
sentiment = article[article_df_col]
source_url = article['source']['href']
score = sentiment
except:
continue
scores.append(score)
article_count += len(article_links)
timeline_df.at[currdate, 'article_count'] = article_count
final_score = average(scores)
return final_score
def predict(self, score):
if not score:
return ''
if 45 < score < 55:
return 'hold'
elif score > 55:
return 'buy'
elif score < 45:
return 'sell'
else:
return ''
def calc_accuracy(self, prediction, change):
if not prediction:
return -1
if prediction == 'hold' and abs(change) < 0.25:
return 1
elif prediction == 'buy' and change > 0.25:
return 1
elif prediction == 'sell' and change < -0.25:
return 1
else:
return 0
def score_and_predict(self, symbols, window=7):
'''
parallelize this function / use spark
'''
print('=> adding scores and calculating accuracies:')
for symbol in tqdm(symbols):
df_dict = self.data[symbol]
article_df = df_dict['article_df']
timeline_df = df_dict['timeline_df']
if all([timeline_df.empty, article_df.empty]):
continue
timeline_df['article_count'] = None
timeline_df['title_score'] = timeline_df.index.map(lambda index: self.calc_score(index, 'title_sentiment', article_df, timeline_df, window))
timeline_df['text_score'] = timeline_df.index.map(lambda index: self.calc_score(index, 'text_sentiment', article_df, timeline_df, window))
timeline_df = self.fill_score(timeline_df)
timeline_df['title_prediction'] = timeline_df.apply(lambda row: self.predict(row['title_score']), axis=1)
timeline_df['text_prediction'] = timeline_df.apply(lambda row: self.predict(row['text_score']), axis=1)
timeline_df['title_result'] = timeline_df.apply(lambda row: self.calc_accuracy(row['title_prediction'], row['change']), axis=1)
timeline_df['text_result'] = timeline_df.apply(lambda row: self.calc_accuracy(row['text_prediction'], row['change']), axis=1)
df_dict['timeline_df'] = timeline_df
def fill_score(self, timeline_df, limit = 3):
'''
fills scores from previous days if not available
'''
delay = timedelta(days=0)
for currdate, row in timeline_df.iterrows():
try:
# attempt to use previous score
while delay.days < limit and (pd.isna(timeline_df.at[currdate, 'title_score']) or pd.isna(timeline_df.at[currdate, 'text_score'])):
if pd.isna(timeline_df.at[currdate, 'title_score']) and not pd.isna(timeline_df.at[currdate - delay, 'title_score']):
timeline_df.at[currdate, 'title_score'] = timeline_df.at[currdate - delay, 'title_score']
if pd.isna(timeline_df.at[currdate, 'text_score']) and not pd.isna(timeline_df.at[currdate - delay, 'text_score']):
timeline_df.at[currdate, 'text_score'] = timeline_df.at[currdate - delay, 'text_score']
delay += timedelta(days=1)
# use neutral score
timeline_df['title_score'].replace({np.nan: 50}, inplace=True)
timeline_df['text_score'].replace({np.nan: 50}, inplace=True)
except Exception as e:
continue
return timeline_df
def sample_article_dfs(self, save=True):
article_dfs = [df_dict['article_df'].sample(n=10) for df_dict in self.data.values()]
sample_df = pd.concat(article_dfs)
if save:
dest = f'./data/sample.csv'
sample_df.to_csv(dest)
print(f'saving sampled article dataframes to "{dest}"')
return sample_df
def load_all(self):
'''
load cached dataframes
'''
self.load_instruments()
self.load_histories(self.instruments)
self.load_data(from_cache=True)
self.load_source_df()
def load_instruments(self):
self.instruments = Instrument.load_instruments(self.symbol_map, self.startdate, self.enddate)
def load_histories(self, instruments, download_article_content=False):
'''
load cached ArticleHistory objects
'''
for instrument in instruments:
startdate, enddate = instrument.date_range()
if not all([startdate, enddate]):
continue
history = ArticleHistory.load_history(instrument, startdate, enddate, self.interval)
if download_article_content:
history.download_text()
self.histories.append(history)
def load_source_df(self):
'''
creates a source-article-count dataframe
'''
article_dfs = [df_dict['article_df'] for df_dict in self.data.values()]
source_urls = list()
for article_df in article_dfs:
source_urls += article_df['source'].apply(lambda source: source['href']).tolist()
source_count = Counter(source_urls)
total = sum(source_count.values())
source_dict = {url: ((count + total) / total) for url, count in source_count.items()}
self.source_df = pd.DataFrame.from_dict(source_dict, orient='index', columns=['weight'])
def load_data(self, from_cache=True):
if from_cache:
for objname in cache.listcache(f'{AnalyticEngine.__name__}'):
symbol, df_name = objname.split('-')[1:]
if symbol not in self.data:
self.data[symbol] = dict()
self.data[symbol][df_name] = cache.readcache(objname)
else:
self.add_all()
def cache_data(self):
for symbol, df_dict in tqdm(self.data.items()):
for df_name, df in df_dict.items():
cache.writecache(f'{AnalyticEngine.__name__}-{symbol}-{df_name}', df)
def add_all(self):
'''
create dataframes from cached objects
'''
self.load_instruments()
self.load_histories(self.instruments)
self.add_data()
def add_data(self):
'''
creates dataframes from objects in cache
'''
for instrument, history in zip(self.instruments, self.histories):
articles = history.get_aligned_articles()
articles_dict = dict()
columns = ['published', 'title', 'link', 'source', 'id', 'text', 'title_sentiment', 'text_sentiment']
for col in columns:
articles_dict[col] = []
for article in articles:
articles_dict[col].append(article.get(col))
article_df = pd.DataFrame.from_dict(articles_dict).set_index('link', drop=False, verify_integrity=True)
article_series = article_df.groupby('published')['link'].apply(list).rename('links')
timeline_df = pd.merge(instrument.df, article_series, left_index=True, right_index=True, how='left')
timeline_df = timeline_df[['Open', 'Close', 'links']].replace({np.nan: None})
timeline_df = timeline_df.rename(columns={'Date': 'date', 'Open': 'open', 'Close': 'close'})
timeline_df['change'] = timeline_df.apply(lambda row: 100 * (row['close'] - row['open']) / row['open'], axis=1)
timeline_df.index = pd.to_datetime(timeline_df.index)
timeline_df.name = instrument.id
article_df.name = instrument.id
self.data[instrument.id] = dict()
self.data[instrument.id]['timeline_df'] = timeline_df
self.data[instrument.id]['article_df'] = article_df
def __repr__(self):
return f'AnalyticEngine(data={len(self.data)}, histories={len(self.histories)})'