-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharticle.py
182 lines (153 loc) · 6.44 KB
/
article.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from pyspark.sql import SparkSession
from pygooglenews import GoogleNews
import newspaper
from tqdm import tqdm
from datetime import datetime, timedelta, date
from time import sleep
import stanza
import random
import requests, json
import cache
from instrument import *
HEADERS = None
with open('./rapidkeys.json', 'r') as f:
HEADERS = json.load(f)
if not HEADERS:
message = '''Missing Rapid API credentials'''
print(message)
def formatdt(dt):
if dt:
return dt.strftime('%Y-%m-%d')
return ''
class ArticleHistory:
def __init__(self, instrument_id=None, startdate=None, enddate=None):
self.instrument_id = instrument_id
self.startdate = startdate
self.enddate = enddate
self.groups = []
def add_group(self, group):
self.groups.append(group)
def get_aligned_articles(self):
aligned = []
for group in self.groups:
articles = group.search['articles'].copy()
aligned.extend(articles)
aligned = [article for article in aligned if type(article.get('published')) == datetime]
aligned.sort(key=lambda article: article.get('published').timestamp())
return aligned
def download_sentiment(self, spark: SparkSession=None):
nlp = stanza.Pipeline(lang='en', processors='tokenize,sentiment')
def sentiment_score(text):
if text:
doc = nlp(text)
sentiments = []
for s in doc.sentences:
if len(s.tokens) > 5: # admit only valid sentences
sentiments.append(s.sentiment)
if len(sentiments) == 0:
return None
score = int(50 * sum(sentiments) / len(sentiments))
return score
return None
def add_sentiment(article):
article['title_sentiment'] = sentiment_score(article.get('title', ''))
article['text_sentiment'] = sentiment_score(article.get('text', ''))
return article
for group in tqdm(self.groups):
rdd = spark.sparkContext.parallelize(group.search['articles'])
rdd.partitionBy(30)
group.search['articles'] = rdd.map(lambda article: add_sentiment(article)).collect()
def download_text(self):
user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15'
config = newspaper.Config()
config.browser_user_agent = user_agent
config.fetch_images = False
config.memoize_articles = False
for group in tqdm(self.groups):
np_articles = []
for article in group.search['articles']:
np_article = newspaper.Article(article['link'])
np_articles.append(np_article)
newspaper.news_pool.set(np_articles, threads_per_source=1)
newspaper.news_pool.join()
for np_article, article in zip(np_articles, group.search['articles']):
try:
np_article.parse()
except Exception as e:
print(e)
continue
article['text'] = np_article.text
article['keywords'] = np_article.keywords
article['summary'] = np_article.summary
@staticmethod
def gn_search(q, fromtime, totime):
sleep(random.uniform(0.4, 0.6))
url = "https://google-news.p.rapidapi.com/v1/search"
headers = HEADERS
qstring = {"q": q, "from": fromtime, "to": totime, "country": "US", "lang": "en"}
response = requests.get(url, headers=headers, params=qstring)
search = json.loads(response.text)
return search
@staticmethod
def load_history(instrument, startdate, enddate, interval, readcache=True, writecache=False):
if readcache:
history = ArticleHistory.readcache(instrument.id)
return history
history = ArticleHistory(instrument.id, startdate, startdate)
while history.enddate < enddate:
try:
nextdate = history.enddate + interval
search = ArticleHistory.gn_search(instrument.qstr(), formatdt(history.enddate), formatdt(nextdate))
group = ArticleGroup(instrument.id, search, history.enddate, nextdate)
except Exception as e:
sleep(1)
continue
history.add_group(group)
history.enddate += interval
if writecache:
history.cache()
return history
def cache(self):
startdate_str = formatdt(self.startdate)
enddate_str = formatdt(self.enddate)
cache.writecache(f'{self.__class__.__name__}_{self.instrument_id}_{startdate_str}_{enddate_str}', self.to_dict())
@staticmethod
def readcache(instrument_id):
query = f'{ArticleHistory.__name__}_{instrument_id}'
objname = cache.findcache(query)
if not objname:
return None
old_history_dict = cache.readcache(objname)
return ArticleHistory.from_dict(old_history_dict)
def to_dict(self):
d = self.__dict__.copy()
d['groups'] = [group.to_dict() for group in d['groups']]
return d
@staticmethod
def from_dict(d):
history = ArticleHistory()
d.update({'groups': [ArticleGroup.from_dict(group_d) for group_d in d['groups']]})
history.__dict__.update(d)
return history
def __repr__(self):
startdate_str = formatdt(self.startdate)
enddate_str = formatdt(self.enddate)
return f'ArticleHistory(instrument_id={self.instrument_id}, startdate={startdate_str}, enddate={enddate_str}, groups={len(self.groups)})'
class ArticleGroup:
def __init__(self, instrument_id=None, search=None, startdate=None, enddate=None):
self.instrument_id = instrument_id
self.search = search
self.startdate = startdate
self.enddate = enddate
@staticmethod
def from_dict(d):
group = ArticleGroup()
group.__dict__.update(d)
return group
def to_dict(self):
return self.__dict__
def __repr__(self):
startdate_str = formatdt(self.startdate)
enddate_str = formatdt(self.enddate)
n_articles = len(self.search['articles'])
return f'ArticleGroup(instrument_id={self.instrument_id}, startdate={startdate_str}, enddate={enddate_str}, search={n_articles})'