-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
109 lines (96 loc) · 3.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*-
# from torch._C import T
# from train import Trainer
import sys
sys.path.append('./src')
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from IPython import embed
import wandb
from ankge.utils import setup_parser
from ankge.utils.tools import *
from ankge.data.Sampler import *
from ankge.data.Grounding import GroundAllRules
def main():
parser = setup_parser()
args = parser.parse_args()
if args.load_config:
args = load_config(args, args.config_path)
seed_everything(args.seed)
"""set up sampler to datapreprocess"""
if args.init_checkpoint:
override_config(args)
elif args.data_path is None :
raise ValueError('one of init_checkpoint/data_path must be choosed.')
if args.save_path is None:
raise ValueError('Where do you want to save your trained model?')
if args.save_path and not os.path.exists(args.save_path):
os.makedirs(args.save_path)
set_logger(args=args)
logging.info("++++++++++++++++++++++++++loading hyper parameter++++++++++++++++++++++++++")
for key, value in args.__dict__.items():
logging.info("Parameter "+key+": "+str(value))
logging.info("++++++++++++++++++++++++++++++++over loading+++++++++++++++++++++++++++++++")
train_sampler_class = import_class(f"ankge.data.{args.train_sampler_class}")
train_sampler = train_sampler_class(args)
test_sampler_class = import_class(f"ankge.data.{args.test_sampler_class}")
test_sampler = test_sampler_class(train_sampler)
"""set up datamodule"""
data_class = import_class(f"ankge.data.{args.data_class}")
kgdata = data_class(args, train_sampler, test_sampler)
"""set up model"""
model_class = import_class(f"ankge.model.{args.model_name}")
model = model_class(args)
"""set up lit_model"""
litmodel_class = import_class(f"ankge.lit_model.{args.litmodel_name}")
lit_model = litmodel_class(model, args)
"""set up logger"""
logger = pl.loggers.TensorBoardLogger("training/logs")
if args.use_wandb:
log_name = "_".join([args.model_name, args.dataset_name, str(args.lr)])
logger = pl.loggers.WandbLogger(name=log_name, project="AnKGE")
logger.log_hyperparams(vars(args))
"""early stopping"""
early_callback = pl.callbacks.EarlyStopping(
monitor="Eval|mrr",
mode="max",
patience=args.early_stop_patience,
# verbose=True,
check_on_train_epoch_end=False,
)
"""set up model save method"""
dirpath = "/".join(["output", args.eval_task, args.dataset_name, args.model_name])
model_checkpoint = pl.callbacks.ModelCheckpoint(
monitor="Eval|mrr",
mode="max",
filename="{epoch}-{Eval|mrr:.3f}",
dirpath=dirpath,
save_weights_only=True,
save_top_k=1,
)
callbacks = [early_callback, model_checkpoint]
# initialize trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=callbacks,
logger=logger,
default_root_dir="training/logs",
gpus="0,",
check_val_every_n_epoch=args.check_per_epoch,
)
'''保存参数到config'''
if args.save_config:
save_config(args)
if args.use_wandb:
logger.watch(lit_model)
if not args.test_only:
# train&valid
trainer.fit(lit_model, datamodule=kgdata)
path = model_checkpoint.best_model_path
else:
path = args.checkpoint_dir
lit_model.load_state_dict(torch.load(path)["state_dict"])
lit_model.eval()
trainer.test(lit_model, datamodule=kgdata)
if __name__ == "__main__":
main()