-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_on_proteins.py
453 lines (404 loc) · 19.7 KB
/
train_on_proteins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import torch
import torch.nn as nn
import torch.nn.functional
from software.protein_datasets.HomologyTAPEDatasetWithCount import HomologyTAPEDatasetWithCount
from software.protein_datasets.ProteinsDBDatasetWithCount import ProteinsDBDatasetWithCount
from software.protein_datasets.ProtFunctDatasetWithCount import ProtFunctDatasetWithCount
from software.protein_datasets.PygHomologyTAPEDatasetWithCount import PygHomologyTAPEDatasetWithCount
from software.protein_datasets.PygProteinsDBDatasetWithCount import PygProteinsDBDatasetWithCount
from software.protein_datasets.PygProtFunctDatasetWithCount import PygProtFunctDatasetWithCount
from data_utils.preprocess import drfwl2_transform
from torch_geometric.seed import seed_everything
import argparse
from tqdm import tqdm
from software.i2gnn.count_I2GNN import (GNN as MPNNCounting,
I2GNN as I2GNNCounting,
NGNN as NGNNCounting,
PPGN as PPGNCounting)
from data_utils.batch import collate
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
from models.pool import NodeLevelPooling
from models.gnn_count import DR2FWL2Kernel
from software.i2gnn.utils_i2 import create_subgraphs, create_subgraphs2
from pygmmpp.data import DataLoader as myDataLoader
from software.i2gnn.dataloader import DataLoader as pyDataLoader
import sys
import time
# os.environ["CUDA_LAUNCH_BLOCKING"]="1"
import local_fwl2 as lfwl
from local_fwl2 import LFWLLayer, SLFWLLayer, SSWLPlusLayer, SSWLLayer
from torch_geometric.utils import to_dense_batch
class NodePooling(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.lin = nn.Conv2d(in_channels, out_channels, (1, 1))
def forward(self, X):
return self.lin(X).sum(-1)
class LFWLWrapper(nn.Module):
def __init__(self, hidden_channels: int,
num_layers: int, model):
super().__init__()
self.localfwl2 = lfwl.LocalFWL2(hidden_channels, num_layers, model,
1, None, 'instance')
self.pooling = NodePooling(hidden_channels, 1)
def forward(self, batch) -> torch.Tensor:
_, mask = to_dense_batch(batch.x, batch.batch0)
return self.pooling(self.localfwl2(
*lfwl.to_dense(batch.x, batch.edge_index, None, batch.batch0))).squeeze().flatten()[mask.flatten()]
target_map = {
'3-cycle': 1,
'4-cycle': 2,
'5-cycle': 3,
'6-cycle': 4,
'4-path': 5
}
class DRFWL2Counting(nn.Module):
def __init__(self,
hidden_channels: int,
num_layers: int,
add_0: bool = True,
add_112: bool = True,
add_212: bool = True,
add_222: bool = True,
eps: float = 0.,
train_eps: bool = False,
norm_type: str = "none",
norm_between_layers: str = "none",
residual: str = "last",
drop_prob: float = 0.0):
super().__init__()
self.hidden_channels = hidden_channels
self.num_layers = num_layers
self.add_0 = add_0
self.add_112 = add_112
self.add_212 = add_212
self.add_222 = add_222
self.initial_eps = eps
self.train_eps = train_eps
self.norm_type = norm_type
self.residual = residual
self.drop_prob = drop_prob
self.initial_proj = nn.Linear(1, hidden_channels)
self.distance_encoding = nn.Embedding(2, hidden_channels)
self.ker = DR2FWL2Kernel(self.hidden_channels,
self.num_layers,
self.initial_eps,
self.train_eps,
self.norm_type,
norm_between_layers,
self.residual,
self.drop_prob)
self.pool = NodeLevelPooling()
self.post_mlp = nn.Sequential(nn.Linear(hidden_channels, hidden_channels // 2),
nn.ELU(),
nn.Linear(hidden_channels // 2, 1))
self.ker.add_aggr(1, 1, 1)
if self.add_0:
self.ker.add_aggr(0, 1, 1)
self.ker.add_aggr(0, 2, 2)
if self.add_112:
self.ker.add_aggr(1, 1, 2)
if self.add_212:
self.ker.add_aggr(2, 2, 1)
if self.add_222:
self.ker.add_aggr(2, 2, 2)
self.reset_parameters()
def reset_parameters(self):
self.initial_proj.reset_parameters()
self.distance_encoding.reset_parameters()
self.ker.reset_parameters()
for m in self.post_mlp:
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
def forward(self, batch) -> torch.Tensor:
edge_indices = [batch.edge_index, batch.edge_index2]
edge_attrs = [self.initial_proj(batch.x),
self.distance_encoding(torch.zeros_like(edge_indices[0][0])),
self.distance_encoding(torch.ones_like(edge_indices[1][0]))]
triangles = {
(1, 1, 1): batch.triangle_1_1_1,
(1, 1, 2): batch.triangle_1_1_2,
(2, 2, 1): batch.triangle_2_2_1,
(2, 2, 2): batch.triangle_2_2_2,
}
inverse_edges = [batch.inverse_edge_1, batch.inverse_edge_2]
edge_attrs = self.ker(edge_attrs,
edge_indices,
triangles,
inverse_edges)
x = self.pool(edge_attrs, edge_indices, batch.num_nodes)
x = self.post_mlp(x).squeeze()
return x
"""
Definition for command-line arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='HomologyTAPE',
help='ProteinsDB/HomologyTAPE/ProtFunct')
parser.add_argument('--model', type=str, default='DRFWL2',
help='MPNN/NGNN/I2GNN/DRFWL2/PPGN/SSWL/SSWLPlus/LFWL/SLFWL')
parser.add_argument('--seed', type=int, default=42, help='random seed.')
parser.add_argument('--root', type=str, default='homology')
parser.add_argument('--target', type=str, default='6-cycle',
help='3/4/5/6-cycle/4-path')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--cuda', type=int, default=0)
parser.add_argument('--num_layers', type=int, default=5)
parser.add_argument('--hidden_channels', type=int, default=64)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_patience', type=int, default=10)
parser.add_argument('--lr_decay', type=float, default=0.9)
parser.add_argument('--lr_min', type=float, default=1e-5)
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--inference', action='store_true', default=False)
# Command-line arguments for only NGNN and I2GNN
parser.add_argument('--h', type=int, default=None, help='hop of enclosing subgraph;\
if None, will not use NestedGNN')
parser.add_argument('--max_nodes_per_hop', type=int, default=None)
parser.add_argument('--node_label', type=str, default='hop',
help='apply distance encoding to nodes within each subgraph, use node\
labels as additional node features; support "hop", "drnl", "spd", \
for "spd", you can specify number of spd to keep by "spd3", "spd4", \
"spd5", etc. Default "spd"=="spd2".')
parser.add_argument('--use_rd', action='store_true', default=False,
help='use resistance distance as additional node labels')
# Command-line arguments for only ProteinsDBDataset
parser.add_argument('--test_split', type=int, default=0, help='0-9')
args = parser.parse_args()
def get_transform():
if args.model == 'DRFWL2':
return drfwl2_transform()
elif args.model == 'NGNN':
return lambda g: create_subgraphs(g, args.h,
max_nodes_per_hop=args.max_nodes_per_hop,
node_label=args.node_label,
use_rd=args.use_rd,
save_relabel=True)
elif args.model == 'I2GNN':
return lambda g: create_subgraphs2(g, args.h,
max_nodes_per_hop=args.max_nodes_per_hop,
node_label=args.node_label,
use_rd=args.use_rd,
)
elif args.model in {'MPNN', 'PPGN'}:
return None
def epoch(model,
loader,
device,
optimizer=None):
if optimizer is None:
model.eval()
else:
model.train()
loss, dataset_len = 0.0, 0
for batch in loader:
if optimizer is not None:
optimizer.zero_grad()
batch = batch.to(device)
truth = batch.__dict__[args.target] if not args.model in {'NGNN', 'I2GNN'} else batch.y[:, target_map[args.target]-1]
pred = model(batch).squeeze()
batch_loss = nn.L1Loss()(pred, truth)
if optimizer is not None:
batch_loss.backward()
optimizer.step()
with torch.no_grad():
loss += batch_loss.item() * batch.num_graphs
dataset_len += batch.num_graphs
return loss/dataset_len
def train_on_count():
seed_everything(args.seed)
if args.model in {'NGNN', 'I2GNN'}:
dataset = eval(f"Pyg{args.dataset}DatasetWithCount")
DataLoader = pyDataLoader
dataloader_kwargs = {}
else:
dataset = eval(f"{args.dataset}DatasetWithCount")
DataLoader = myDataLoader
dataloader_kwargs = {}
if args.model == 'DRFWL2':
dataloader_kwargs = {'collator': collate}
print(f"Use {args.dataset} dataset, {args.model} model")
start_preprocess = time.time()
if args.dataset == 'ProteinsDB':
datasets = [dataset(args.root, i, includeHB=True, pre_transform=get_transform())
for i in range(10)]
test_split, valid_split = args.test_split, (args.test_split + 1) % 10
train_splits = [i for i in range(10) if i != test_split and i != valid_split]
train_val_splits = train_splits + [valid_split]
else:
train_dataset = dataset(args.root, 'training', includeHB=True,
pre_transform=get_transform())
valid_dataset = dataset(args.root, 'validation', includeHB=True,
pre_transform=get_transform())
if args.dataset == 'HomologyTAPE':
test_fold_dataset = dataset(args.root, 'test_fold', includeHB=True,
pre_transform=get_transform())
test_family_dataset = dataset(args.root, 'test_family', includeHB=True,
pre_transform=get_transform())
test_superfamily_dataset = dataset(args.root, 'test_superfamily', includeHB=True,
pre_transform=get_transform())
elif args.dataset == 'ProtFunct':
test_dataset = dataset(args.root, 'testing', includeHB=True,
pre_transform=get_transform())
end_preprocess = time.time()
print("Pre-processing time:", end_preprocess - start_preprocess)
if args.dataset == 'ProteinsDB':
if args.model in {'NGNN', 'I2GNN'}:
train_val = torch.cat([datasets[i].data.y[:, target_map[args.target]-1] for i in train_val_splits]).to(torch.float)
mean = train_val.mean(dim=0)
std = train_val.std(dim=0)
print(f"Mean: {mean}, Std: {std}")
for i in range(10):
datasets[i].data.y = (datasets[i].data.y.to(torch.float) - mean) / std
else:
train_val = torch.cat([datasets[i].data_batch.__dict__[args.target] for i in train_val_splits]).to(torch.float)
mean = train_val.mean(dim=0)
std = train_val.std(dim=0)
print(f"Mean: {mean}, Std: {std}")
for i in range(10):
datasets[i].data_batch.__dict__[args.target] = (datasets[i].data_batch.__dict__[args.target].to(torch.float) - mean) / std
else:
if args.model in {'NGNN', 'I2GNN'}:
train_val = torch.cat([train_dataset.data.y[:, target_map[args.target]-1],
valid_dataset.data.y[:, target_map[args.target]-1]]).to(torch.float)
mean = train_val.mean(dim=0)
std = train_val.std(dim=0)
print(f"Mean: {mean}, Std: {std}")
train_dataset.data.y = (train_dataset.data.y.to(torch.float) - mean) / std
valid_dataset.data.y = (valid_dataset.data.y.to(torch.float) - mean) / std
if args.dataset == 'HomologyTAPE':
test_fold_dataset.data.y = (test_fold_dataset.data.y.to(torch.float) - mean) / std
test_family_dataset.data.y = (test_family_dataset.data.y.to(torch.float) - mean) / std
test_superfamily_dataset.data.y = (test_superfamily_dataset.data.y.to(torch.float) - mean) / std
elif args.dataset == 'ProtFunct':
test_dataset.data.y = (test_dataset.data.y.to(torch.float) - mean) / std
else:
train_val = torch.cat([train_dataset.data_batch.__dict__[args.target],
valid_dataset.data_batch.__dict__[args.target]]).to(torch.float)
mean = train_val.mean(dim=0)
std = train_val.std(dim=0)
print(f"Mean: {mean}, Std: {std}")
train_dataset.data_batch.__dict__[args.target] = (train_dataset.data_batch.__dict__[args.target].to(torch.float) - mean) / std
valid_dataset.data_batch.__dict__[args.target] = (valid_dataset.data_batch.__dict__[args.target].to(torch.float) - mean) / std
if args.dataset == 'HomologyTAPE':
test_fold_dataset.data_batch.__dict__[args.target] = (test_fold_dataset.data_batch.__dict__[args.target].to(torch.float) - mean) / std
test_family_dataset.data_batch.__dict__[args.target] = (test_family_dataset.data_batch.__dict__[args.target].to(torch.float) - mean) / std
test_superfamily_dataset.data_batch.__dict__[args.target] = (test_superfamily_dataset.data_batch.__dict__[args.target].to(torch.float) - mean) / std
elif args.dataset == 'ProtFunct':
test_dataset.data_batch.__dict__[args.target] = (test_dataset.data_batch.__dict__[args.target].to(torch.float) - mean) / std
"""
Load the dataset.
"""
if args.dataset == 'ProteinsDB':
loaders = [DataLoader(dataset, batch_size=args.batch_size,
shuffle=i in train_splits, **dataloader_kwargs)
for (i, dataset) in enumerate(datasets)]
else:
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, **dataloader_kwargs)
val_loader = DataLoader(valid_dataset, batch_size=args.batch_size,
shuffle=False, **dataloader_kwargs)
if args.dataset == 'HomologyTAPE':
test_fold_loader = DataLoader(test_fold_dataset, batch_size=args.batch_size,
shuffle=False, **dataloader_kwargs)
test_family_loader = DataLoader(test_family_dataset, batch_size=args.batch_size,
shuffle=False, **dataloader_kwargs)
test_superfamily_loader = DataLoader(test_superfamily_dataset, batch_size=args.batch_size,
shuffle=False, **dataloader_kwargs)
elif args.dataset == 'ProtFunct':
test_loader = DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=False, **dataloader_kwargs)
"""
Set the device.
"""
device = f"cuda:{args.cuda}" if args.cuda != -1 else "cpu"
"""
Get the model.
"""
model = eval(f"{args.model}Counting")(hidden_channels=args.hidden_channels,
num_layers=args.num_layers) if args.model not in {'SSWL', 'SSWLPlus', 'LFWL', 'SLFWL'} else\
LFWLWrapper(args.hidden_channels, args.num_layers, eval(f"{args.model}Layer"))
print("# of Parameters:", sum([p.numel() for p in model.parameters()]))
"""
Get the optimizer.
"""
optimizer = Adam(model.parameters(), lr=args.lr)
"""
Get the LR scheduler.
"""
scheduler = ReduceLROnPlateau(optimizer, 'min',
factor=args.lr_decay,
patience=args.lr_patience,
min_lr=args.lr_min)
"""
Run the training script.
"""
model.to(device)
best_val_loss = 1e6
if args.dataset == 'HomologyTAPE':
best_test_fold_loss = 0
best_test_family_loss = 0
best_test_superfamily_loss = 0
else:
best_test_loss = 0
next_run = time.time()
for idx in range(args.epochs):
if args.dataset != 'ProteinsDB':
if args.inference:
with torch.no_grad():
train_loss = epoch(model, train_loader, device, None)
else:
train_loss = epoch(model, train_loader, device, optimizer)
with torch.no_grad():
val_loss = epoch(model, val_loader, device, None)
if args.dataset == 'HomologyTAPE':
test_fold_loss = epoch(model, test_fold_loader, device, None)
test_family_loss = epoch(model, test_family_loader, device, None)
test_superfamily_loss = epoch(model, test_superfamily_loader, device, None)
elif args.dataset == 'ProtFunct':
test_loss = epoch(model, test_loader, device, None)
else:
if args.inference:
with torch.no_grad():
train_loss = sum(
[epoch(model, loaders[i], device, None) for i in train_splits]
) / 8
else:
train_loss = sum(
[epoch(model, loaders[i], device, optimizer) for i in train_splits]
) / 8
with torch.no_grad():
val_loss = epoch(model, loaders[valid_split], device, None)
test_loss = epoch(model, loaders[test_split], device, None)
if val_loss < best_val_loss:
best_val_loss = val_loss
if args.dataset == 'HomologyTAPE':
best_test_fold_loss = test_fold_loss
best_test_family_loss = test_family_loss
best_test_superfamily_loss = test_superfamily_loss
else:
best_test_loss = test_loss
if idx % 50 == 49:
fifty_run = time.time()
print("Running time for 50 epochs: ", fifty_run - next_run)
next_run = fifty_run
scheduler.step(val_loss)
print("Epoch %d: " % idx)
print("Training MAE: %f" % train_loss)
print("Validation MAE: %f" % val_loss)
if args.dataset == 'HomologyTAPE':
print("Test Fold MAE: %f" % test_fold_loss)
print("Test Family MAE: %f" % test_family_loss)
print("Test Superfamily MAE: %f" % test_superfamily_loss)
else:
print("Test MAE: %f" % test_loss)
print("Best Validation MAE: %f" % best_val_loss)
if args.dataset == 'HomologyTAPE':
print("Best Test Fold MAE: %f" % best_test_fold_loss)
print("Best Test Family MAE: %f" % best_test_family_loss)
print("Best Test Superfamily MAE: %f" % best_test_superfamily_loss)
else:
print("Best Test MAE: %f" % best_test_loss)
if __name__ == "__main__":
train_on_count()