forked from aiff22/DPED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
145 lines (86 loc) · 4.62 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import tensorflow as tf
def resnet(input_image):
with tf.compat.v1.variable_scope("generator"):
W1 = weight_variable([9, 9, 3, 64], name="W1"); b1 = bias_variable([64], name="b1");
c1 = tf.nn.relu(conv2d(input_image, W1) + b1)
# residual 1
W2 = weight_variable([3, 3, 64, 64], name="W2"); b2 = bias_variable([64], name="b2");
c2 = tf.nn.relu(_instance_norm(conv2d(c1, W2) + b2))
W3 = weight_variable([3, 3, 64, 64], name="W3"); b3 = bias_variable([64], name="b3");
c3 = tf.nn.relu(_instance_norm(conv2d(c2, W3) + b3)) + c1
# residual 2
W4 = weight_variable([3, 3, 64, 64], name="W4"); b4 = bias_variable([64], name="b4");
c4 = tf.nn.relu(_instance_norm(conv2d(c3, W4) + b4))
W5 = weight_variable([3, 3, 64, 64], name="W5"); b5 = bias_variable([64], name="b5");
c5 = tf.nn.relu(_instance_norm(conv2d(c4, W5) + b5)) + c3
# residual 3
W6 = weight_variable([3, 3, 64, 64], name="W6"); b6 = bias_variable([64], name="b6");
c6 = tf.nn.relu(_instance_norm(conv2d(c5, W6) + b6))
W7 = weight_variable([3, 3, 64, 64], name="W7"); b7 = bias_variable([64], name="b7");
c7 = tf.nn.relu(_instance_norm(conv2d(c6, W7) + b7)) + c5
# residual 4
W8 = weight_variable([3, 3, 64, 64], name="W8"); b8 = bias_variable([64], name="b8");
c8 = tf.nn.relu(_instance_norm(conv2d(c7, W8) + b8))
W9 = weight_variable([3, 3, 64, 64], name="W9"); b9 = bias_variable([64], name="b9");
c9 = tf.nn.relu(_instance_norm(conv2d(c8, W9) + b9)) + c7
# Convolutional
W10 = weight_variable([3, 3, 64, 64], name="W10"); b10 = bias_variable([64], name="b10");
c10 = tf.nn.relu(conv2d(c9, W10) + b10)
W11 = weight_variable([3, 3, 64, 64], name="W11"); b11 = bias_variable([64], name="b11");
c11 = tf.nn.relu(conv2d(c10, W11) + b11)
# Final
W12 = weight_variable([9, 9, 64, 3], name="W12"); b12 = bias_variable([3], name="b12");
enhanced = tf.nn.tanh(conv2d(c11, W12) + b12) * 0.58 + 0.5
return enhanced
def adversarial(image_):
with tf.compat.v1.variable_scope("discriminator"):
conv1 = _conv_layer(image_, 48, 11, 4, batch_nn = False)
conv2 = _conv_layer(conv1, 128, 5, 2)
conv3 = _conv_layer(conv2, 192, 3, 1)
conv4 = _conv_layer(conv3, 192, 3, 1)
conv5 = _conv_layer(conv4, 128, 3, 2)
flat_size = 128 * 7 * 7
conv5_flat = tf.reshape(conv5, [-1, flat_size])
W_fc = tf.Variable(tf.compat.v1.truncated_normal([flat_size, 1024], stddev=0.01))
bias_fc = tf.Variable(tf.constant(0.01, shape=[1024]))
fc = leaky_relu(tf.matmul(conv5_flat, W_fc) + bias_fc)
W_out = tf.Variable(tf.compat.v1.truncated_normal([1024, 2], stddev=0.01))
bias_out = tf.Variable(tf.constant(0.01, shape=[2]))
adv_out = tf.nn.softmax(tf.matmul(fc, W_out) + bias_out)
return adv_out
def weight_variable(shape, name):
initial = tf.compat.v1.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial, name=name)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def leaky_relu(x, alpha = 0.2):
return tf.maximum(alpha * x, x)
def _conv_layer(net, num_filters, filter_size, strides, batch_nn=True):
weights_init = _conv_init_vars(net, num_filters, filter_size)
strides_shape = [1, strides, strides, 1]
bias = tf.Variable(tf.constant(0.01, shape=[num_filters]))
net = tf.nn.conv2d(net, weights_init, strides_shape, padding='SAME') + bias
net = leaky_relu(net)
if batch_nn:
net = _instance_norm(net)
return net
def _instance_norm(net):
batch, rows, cols, channels = [i.value for i in net.get_shape()]
var_shape = [channels]
mu, sigma_sq = tf.compat.v1.nn.moments(net, [1,2], keepdims=True)
shift = tf.Variable(tf.zeros(var_shape))
scale = tf.Variable(tf.ones(var_shape))
epsilon = 1e-3
normalized = (net-mu)/(sigma_sq + epsilon)**(.5)
return scale * normalized + shift
def _conv_init_vars(net, out_channels, filter_size, transpose=False):
_, rows, cols, in_channels = [i.value for i in net.get_shape()]
if not transpose:
weights_shape = [filter_size, filter_size, in_channels, out_channels]
else:
weights_shape = [filter_size, filter_size, out_channels, in_channels]
weights_init = tf.Variable(tf.compat.v1.truncated_normal(weights_shape, stddev=0.01, seed=1), dtype=tf.float32)
return weights_init