-
Notifications
You must be signed in to change notification settings - Fork 1
/
example.py
147 lines (123 loc) · 3.91 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
from datetime import datetime
import argparse
import torch.multiprocessing as mp
import torchvision
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import torch.distributed as dist
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.fc = nn.Linear(7 * 7 * 32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
def train(gpu, args):
##################
# step 2
rank = args.nr * args.gpus + gpu
dist.init_process_group(
backend="nccl",
init_method="env://",
world_size=args.world_size,
rank=rank,
)
##################
torch.manual_seed(0)
torch.cuda.manual_seed(0)
model = ConvNet()
torch.cuda.set_device(gpu)
model.cuda(gpu)
batch_size = 100
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(gpu)
optimizer = torch.optim.SGD(model.parameters(), 1e-4)
##################
# step 3
model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
##################
# Data loading code
train_dataset = torchvision.datasets.MNIST(
root="./data",
train=True,
transform=transforms.ToTensor(),
download=True,
)
#################
# step 4
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=args.world_size, rank=rank
)
#################
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=False, # step 5
num_workers=0,
pin_memory=True,
sampler=train_sampler, # step 6
)
start = datetime.now()
total_step = len(train_loader)
for epoch in range(args.epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0 and gpu == 0:
print(
"Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}".format(
epoch + 1, args.epochs, i + 1, total_step, loss.item()
)
)
if gpu == 0:
print("Training complete in: " + str(datetime.now() - start))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--nodes", default=2, type=int, metavar="N")
parser.add_argument(
"-g", "--gpus", default=1, type=int, help="number of gpus per node"
)
parser.add_argument(
"-nr", "--nr", default=0, type=int, help="ranking within the nodes"
)
parser.add_argument(
"--epochs",
default=10000,
type=int,
metavar="N",
help="number of total epochs to run",
)
args = parser.parse_args()
##################
# step 1
args.world_size = args.gpus * args.nodes
os.environ["MASTER_ADDR"] = "192.168.100.190"
os.environ["MASTER_PORT"] = "8765"
mp.spawn(train, nprocs=args.gpus, args=(args,))
##################
if __name__ == "__main__":
main()