forked from mesolitica/NLP-Models-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
130 lines (111 loc) · 3.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import librosa
import copy
from scipy import signal
from scipy.io import wavfile
import matplotlib.pyplot as plt
import seaborn as sns
import os
import unicodedata
import re
# P: Padding
# E: End of Sentence
path = '../data/'
vocab = "PE abcdefghijklmnopqrstuvwxyz'.?"
max_duration = 10.0
sample_rate = 22050
fourier_window_size = 2048
frame_shift = 0.0125
frame_length = 0.05
hop_length = int(sample_rate * frame_shift)
win_length = int(sample_rate * frame_length)
n_mels = 80
power = 1.2
iteration_griffin = 50
preemphasis = 0.97
max_db = 100
ref_db = 20
embed_size = 256
encoder_num_banks = 16
decoder_num_banks = 8
num_highwaynet_blocks = 4
resampled = 5
dropout_rate = 0.5
learning_rate = 0.001
batch_size = 32
def get_spectrogram(audio_file):
y, sr = librosa.load(audio_file, sr = sample_rate)
y, _ = librosa.effects.trim(y)
y = np.append(y[0], y[1:] - preemphasis * y[:-1])
linear = librosa.stft(
y = y,
n_fft = fourier_window_size,
hop_length = hop_length,
win_length = win_length,
)
mag = np.abs(linear)
mel_basis = librosa.filters.mel(sample_rate, fourier_window_size, n_mels)
mel = np.dot(mel_basis, mag)
mel = 20 * np.log10(np.maximum(1e-5, mel))
mag = 20 * np.log10(np.maximum(1e-5, mag))
mel = np.clip((mel - ref_db + max_db) / max_db, 1e-8, 1)
mag = np.clip((mag - ref_db + max_db) / max_db, 1e-8, 1)
return mel.T.astype(np.float32), mag.T.astype(np.float32)
def invert_spectrogram(spectrogram):
return librosa.istft(
spectrogram, hop_length, win_length = win_length, window = 'hann'
)
def spectrogram2wav(mag):
mag = mag.T
mag = (np.clip(mag, 0, 1) * max_db) - max_db + ref_db
mag = np.power(10.0, mag * 0.05)
wav = griffin_lim(mag)
wav = signal.lfilter([1], [1, -preemphasis], wav)
wav, _ = librosa.effects.trim(wav)
return wav.astype(np.float32)
def griffin_lim(spectrogram):
X_best = copy.deepcopy(spectrogram)
for i in range(iteration_griffin):
X_T = invert_spectrogram(X_best)
est = librosa.stft(
X_T, fourier_window_size, hop_length, win_length = win_length
)
phase = est / np.maximum(1e-8, np.abs(est))
X_best = spectrogram * phase
X_T = invert_spectrogram(X_best)
return np.real(X_T)
def get_wav(spectrogram):
mag = (np.clip(spectrogram.T, 0, 1) * max_db) - max_db + ref_db
mag = np.power(10.0, mag * 0.05)
wav = griffin_lim(mag)
wav = signal.lfilter([1], [1, -preemphasis], wav)
return librosa.effects.trim(wav).astype(np.float32)
def load_file(path):
fname = os.path.basename(path)
mel, mag = get_spectrogram(path)
t = mel.shape[0]
num_paddings = resampled - (t % resampled) if t % resampled != 0 else 0
mel = np.pad(mel, [[0, num_paddings], [0, 0]], mode = 'constant')
mag = np.pad(mag, [[0, num_paddings], [0, 0]], mode = 'constant')
return fname, mel.reshape((-1, n_mels * resampled)), mag
def text_normalize(text):
text = ''.join(
char
for char in unicodedata.normalize('NFD', text)
if unicodedata.category(char) != 'Mn'
)
text = text.lower()
text = re.sub('[^{}]'.format(vocab), ' ', text)
text = re.sub('[ ]+', ' ', text)
return text
def get_cached(path):
mel = 'mel/{}.npy'.format(path)
mag = 'mag/{}.npy'.format(path)
return np.load(mel), np.load(mag)
def plot_alignment(alignment):
fig, ax = plt.subplots()
im = ax.imshow(alignment)
fig.colorbar(im)
plt.show()
char2idx = {char: idx for idx, char in enumerate(vocab)}
idx2char = {idx: char for idx, char in enumerate(vocab)}