forked from torch-points3d/torch-points3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_neighbour_dist.py
108 lines (80 loc) · 3.53 KB
/
find_neighbour_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import torch
import hydra
import logging
import numpy as np
from omegaconf import OmegaConf
import pickle
# Import building function for model and dataset
from torch_points3d.datasets.dataset_factory import instantiate_dataset
from torch_points3d.models.model_factory import instantiate_model
# Import BaseModel / BaseDataset for type checking
from torch_points3d.models.base_model import BaseModel
from torch_points3d.datasets.base_dataset import BaseDataset
# Import from metrics
from torch_points3d.metrics.base_tracker import BaseTracker
from torch_points3d.metrics.colored_tqdm import Coloredtqdm as Ctq
from torch_points3d.metrics.model_checkpoint import ModelCheckpoint
# Utils import
from torch_points3d.utils.colors import COLORS
from torch_points3d.utils.config import determine_stage, launch_wandb
from torch_points3d.visualization import Visualizer
from torch_points3d.utils.config import set_debugging_vars_to_global
from torch_points3d.utils.debugging_vars import extract_histogram
DIR = os.path.dirname(os.path.realpath(__file__))
log = logging.getLogger(__name__)
def process(model, data, device):
with torch.no_grad():
model.set_input(data, device)
model.forward()
def run_epoch(model: BaseModel, loader, device: str, num_batches: int):
model.eval()
with Ctq(loader) as tq_loader:
for batch_idx, data in enumerate(tq_loader):
if batch_idx < num_batches:
process(model, data, device)
else:
break
def run(cfg, model: BaseModel, dataset: BaseDataset, device, measurement_name: str):
measurements = {}
num_batches = getattr(cfg.debugging, "num_batches", np.inf)
run_epoch(model, dataset.train_dataloader, device, num_batches)
measurements["train"] = extract_histogram(model.get_spatial_ops(), normalize=False)
if dataset.has_val_loader:
run_epoch(model, dataset.val_dataloader, device, num_batches)
measurements["val"] = extract_histogram(model.get_spatial_ops(), normalize=False)
for loader in dataset.test_dataloaders:
run_epoch(model, dataset.test_dataloaders, device, num_batches)
measurements[loader.dataset.name] = extract_histogram(model.get_spatial_ops(), normalize=False)
with open(os.path.join(DIR, "measurements/{}.pickle".format(measurement_name)), "wb") as f:
pickle.dump(measurements, f)
@hydra.main(config_path="conf/config.yaml")
def main(cfg):
OmegaConf.set_struct(cfg, False) # This allows getattr and hasattr methods to function correctly
if cfg.pretty_print:
print(cfg.pretty())
set_debugging_vars_to_global(cfg.debugging)
# Get device
device = torch.device("cuda" if (torch.cuda.is_available() and cfg.training.cuda) else "cpu")
log.info("DEVICE : {}".format(device))
# Enable CUDNN BACKEND
torch.backends.cudnn.enabled = cfg.training.enable_cudnn
dataset = instantiate_dataset(cfg.data)
model = instantiate_model(cfg, dataset)
log.info(model)
log.info("Model size = %i", sum(param.numel() for param in model.parameters() if param.requires_grad))
# Set dataloaders
dataset.create_dataloaders(
model,
cfg.training.batch_size,
cfg.training.shuffle,
cfg.training.num_workers,
cfg.training.precompute_multi_scale,
)
log.info(dataset)
# Run training / evaluation
model = model.to(device)
measurement_name = "{}_{}".format(cfg.model_name, dataset.__class__.__name__)
run(cfg, model, dataset, device, measurement_name)
if __name__ == "__main__":
main()