-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
198 lines (158 loc) · 6.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""People Counter."""
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit person to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import time
import socket
import json
import cv2
import numpy as np
import logging as log
import paho.mqtt.client as mqtt
from argparse import ArgumentParser
from inference import Network
from src.utils import preprocess,draw_box
# MQTT server environment variables
HOSTNAME = socket.gethostname()
IPADDRESS = socket.gethostbyname(HOSTNAME)
MQTT_HOST = IPADDRESS
MQTT_PORT = 3001
MQTT_KEEPALIVE_INTERVAL = 60
# Check for a person detection every 10 frames
PERSON_FRAMERATE = 10
def build_argparser():
"""
Parse command line arguments.
:return: command line arguments
"""
parser = ArgumentParser()
parser.add_argument("-m", "--model", required=True, type=str,
help="Path to an xml file with a trained model.")
parser.add_argument("-i", "--input", required=True, type=str,
help="Path to video file")
# Note - CPU extensions are moved to plugin since OpenVINO release 2020.1.
# The extensions are loaded automatically while
# loading the CPU plugin, hence 'add_extension' need not be used.
# parser.add_argument("-l", "--cpu_extension", required=False, type=str,
# default=None,
# help="MKLDNN (CPU)-targeted custom layers."
# "Absolute path to a shared library with the"
# "kernels impl.")
parser.add_argument("-d", "--device", type=str, default="CPU",
help="Specify the target device to infer on: "
"CPU, GPU, FPGA or MYRIAD is acceptable. Sample "
"will look for a suitable plugin for device "
"specified (CPU by default)")
parser.add_argument("-pt", "--prob_threshold", type=float, default=0.5,
help="Probability threshold for detections filtering"
"(0.5 by default)")
return parser
def connect_mqtt():
client = None
client = mqtt.Client()
client.connect(MQTT_HOST, MQTT_PORT, MQTT_KEEPALIVE_INTERVAL)
return client
def infer_on_stream(args, client):
"""
Initialize the inference network, stream video to network,
and output stats and video.
:param args: Command line arguments parsed by `build_argparser()`
:param client: MQTT client
:return: None
"""
# Initialise the class
infer_network = Network()
# Set Probability threshold for detections
prob_threshold = args.prob_threshold
### Load the model through `infer_network` ###
infer_network.load_model(args.model, args.device)
net_input_shape = infer_network.get_input_shape()
n, c, h, w = net_input_shape
if(args.input == '0'):
args.input = 0
cap = cv2.VideoCapture(args.input)
cap.open(args.input)
#Init info
count_history = [0]*PERSON_FRAMERATE
current_count = 0
total_people = 0
counting = False
delta = 0
while cap.isOpened():
### Read from the video capture ###
flag, frame = cap.read()
if not flag:
break
key_pressed = cv2.waitKey(60)
cv2.imshow("Input", frame)
resized_img = preprocess(frame,h,w)
infer_network.exec_net(resized_img)
if infer_network.wait() == 0:
result = infer_network.get_output()
result = result.squeeze()
# Handle only person info
result = result[result[:,1]==1]
result = result[result[:,2]>=args.prob_threshold]
# Number of persons in current frame
person_in_frame = result.shape[0]
# Update history
count_history.pop(0)
count_history.append(person_in_frame)
previous_count = current_count
current_count = max(set(count_history), key = count_history.count)
delta = current_count - previous_count
if delta>0:
# update number of people seen
total_people+=delta
print(total_people)
# Draw bbox around detected person
for person in result:
frame = draw_box(frame, person)
cv2.imshow("Output", frame)
### Publish statistics
if client is not None:
client.publish("person", json.dumps({"count": current_count, 'total': tot_people}))
### Send the frame to the FFMPEG server ###
try:
sys.stdout.buffer.write(frame)
sys.stdout.flush()
except BrokenPipeError:
print ('BrokenPipeError caught', file = sys.stderr)
if key_pressed == 27:
break
# Release the capture and destroy any OpenCV windows
sys.stderr.close()
client.disconnect()
cap.release()
cv2.destroyAllWindows()
def main():
"""
Load the network and parse the output.
:return: None
"""
# Grab command line args
args = build_argparser().parse_args()
# Connect to the MQTT server
client = connect_mqtt()
# Perform inference on the input stream
infer_on_stream(args, client)
if __name__ == '__main__':
main()