Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(mongodb): remove embeddings from top_n lookup #115

Merged
merged 6 commits into from
Nov 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 15 additions & 4 deletions rig-mongodb/examples/vector_search_mongodb.rs
Original file line number Diff line number Diff line change
@@ -1,13 +1,22 @@
use mongodb::bson;
use mongodb::{options::ClientOptions, Client as MongoClient, Collection};
use rig::vector_store::VectorStore;
use rig::{
embeddings::{DocumentEmbeddings, EmbeddingsBuilder},
embeddings::EmbeddingsBuilder,
providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
vector_store::VectorStoreIndex,
};
use rig_mongodb::{MongoDbVectorStore, SearchParams};
use serde::{Deserialize, Serialize};
use std::env;

#[derive(Clone, Eq, PartialEq, Serialize, Deserialize, Debug)]
pub struct DocumentResponse {
#[serde(rename = "_id")]
pub id: String,
pub document: serde_json::Value,
}

#[tokio::main]
async fn main() -> Result<(), anyhow::Error> {
// Initialize OpenAI client
Expand All @@ -25,7 +34,7 @@ async fn main() -> Result<(), anyhow::Error> {
MongoClient::with_options(options).expect("MongoDB client options should be valid");

// Initialize MongoDB vector store
let collection: Collection<DocumentEmbeddings> = mongodb_client
let collection: Collection<bson::Document> = mongodb_client
.database("knowledgebase")
.collection("context");

Expand All @@ -49,11 +58,13 @@ async fn main() -> Result<(), anyhow::Error> {

// Create a vector index on our vector store
// IMPORTANT: Reuse the same model that was used to generate the embeddings
let index = vector_store.index(model, "vector_index", SearchParams::default());
let index = vector_store
.index(model, "vector_index", SearchParams::default())
.await?;

// Query the index
let results = index
.top_n::<DocumentEmbeddings>("What is a linglingdong?", 1)
.top_n::<DocumentResponse>("What is a linglingdong?", 1)
.await?
.into_iter()
.map(|(score, id, doc)| (score, id, doc.document))
Expand Down
104 changes: 90 additions & 14 deletions rig-mongodb/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,56 @@ use rig::{
embeddings::{DocumentEmbeddings, Embedding, EmbeddingModel},
vector_store::{VectorStore, VectorStoreError, VectorStoreIndex},
};
use serde::Deserialize;
use serde::{Deserialize, Serialize};

/// A MongoDB vector store.
pub struct MongoDbVectorStore {
collection: mongodb::Collection<DocumentEmbeddings>,
collection: mongodb::Collection<bson::Document>,
}

#[derive(Debug, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
struct SearchIndex {
id: String,
name: String,
#[serde(rename = "type")]
index_type: String,
status: String,
queryable: bool,
latest_definition: LatestDefinition,
}

impl SearchIndex {
async fn get_search_index(
collection: mongodb::Collection<bson::Document>,
index_name: &str,
) -> Result<SearchIndex, VectorStoreError> {
collection
.list_search_indexes(index_name, None, None)
.await
.map_err(mongodb_to_rig_error)?
.with_type::<SearchIndex>()
.next()
.await
.transpose()
.map_err(mongodb_to_rig_error)?
.ok_or(VectorStoreError::DatastoreError("Index not found".into()))
}
}

#[derive(Debug, Serialize, Deserialize)]
struct LatestDefinition {
fields: Vec<Field>,
}

#[derive(Debug, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
struct Field {
#[serde(rename = "type")]
field_type: String,
path: String,
num_dimensions: i32,
similarity: String,
}

fn mongodb_to_rig_error(e: mongodb::error::Error) -> VectorStoreError {
Expand All @@ -24,6 +69,7 @@ impl VectorStore for MongoDbVectorStore {
documents: Vec<DocumentEmbeddings>,
) -> Result<(), VectorStoreError> {
self.collection
.clone_with_type::<DocumentEmbeddings>()
.insert_many(documents, None)
.await
.map_err(mongodb_to_rig_error)?;
Expand All @@ -35,6 +81,7 @@ impl VectorStore for MongoDbVectorStore {
id: &str,
) -> Result<Option<DocumentEmbeddings>, VectorStoreError> {
self.collection
.clone_with_type::<DocumentEmbeddings>()
.find_one(doc! { "_id": id }, None)
.await
.map_err(mongodb_to_rig_error)
Expand Down Expand Up @@ -71,6 +118,7 @@ impl VectorStore for MongoDbVectorStore {
query: Self::Q,
) -> Result<Option<DocumentEmbeddings>, VectorStoreError> {
self.collection
.clone_with_type::<DocumentEmbeddings>()
.find_one(query, None)
.await
.map_err(mongodb_to_rig_error)
Expand All @@ -79,29 +127,30 @@ impl VectorStore for MongoDbVectorStore {

impl MongoDbVectorStore {
/// Create a new `MongoDbVectorStore` from a MongoDB collection.
pub fn new(collection: mongodb::Collection<DocumentEmbeddings>) -> Self {
pub fn new(collection: mongodb::Collection<bson::document::Document>) -> Self {
Self { collection }
}

/// Create a new `MongoDbVectorIndex` from an existing `MongoDbVectorStore`.
///
/// The index (of type "vector") must already exist for the MongoDB collection.
/// See the MongoDB [documentation](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-type/) for more information on creating indexes.
pub fn index<M: EmbeddingModel>(
pub async fn index<M: EmbeddingModel>(
&self,
model: M,
index_name: &str,
search_params: SearchParams,
) -> MongoDbVectorIndex<M> {
MongoDbVectorIndex::new(self.collection.clone(), model, index_name, search_params)
) -> Result<MongoDbVectorIndex<M>, VectorStoreError> {
MongoDbVectorIndex::new(self.collection.clone(), model, index_name, search_params).await
}
}

/// A vector index for a MongoDB collection.
pub struct MongoDbVectorIndex<M: EmbeddingModel> {
collection: mongodb::Collection<DocumentEmbeddings>,
collection: mongodb::Collection<bson::Document>,
model: M,
index_name: String,
embedded_field: String,
search_params: SearchParams,
}

Expand All @@ -118,7 +167,7 @@ impl<M: EmbeddingModel> MongoDbVectorIndex<M> {
doc! {
"$vectorSearch": {
"index": &self.index_name,
"path": "embeddings.vec",
"path": self.embedded_field.clone(),
"queryVector": &prompt_embedding.vec,
"numCandidates": num_candidates.unwrap_or((n * 10) as u32),
"limit": n as u32,
Expand All @@ -140,22 +189,42 @@ impl<M: EmbeddingModel> MongoDbVectorIndex<M> {
}

impl<M: EmbeddingModel> MongoDbVectorIndex<M> {
pub fn new(
collection: mongodb::Collection<DocumentEmbeddings>,
pub async fn new(
collection: mongodb::Collection<bson::Document>,
model: M,
index_name: &str,
search_params: SearchParams,
) -> Self {
Self {
) -> Result<Self, VectorStoreError> {
let search_index = SearchIndex::get_search_index(collection.clone(), index_name).await?;

if !search_index.queryable {
return Err(VectorStoreError::DatastoreError(
"Index is not queryable".into(),
));
}

let embedded_field = search_index
.latest_definition
.fields
.into_iter()
.map(|field| field.path)
.next()
// This error shouldn't occur if the index is queryable
.ok_or(VectorStoreError::DatastoreError(
"No embedded fields found".into(),
))?;

Ok(Self {
collection,
model,
index_name: index_name.to_string(),
embedded_field,
search_params,
}
})
}
}

/// See [MongoDB Vector Search](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/) for more information
/// See [MongoDB Vector Search](`https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/`) for more information
/// on each of the fields
pub struct SearchParams {
filter: mongodb::bson::Document,
Expand Down Expand Up @@ -219,6 +288,13 @@ impl<M: EmbeddingModel + std::marker::Sync + Send> VectorStoreIndex for MongoDbV
[
self.pipeline_search_stage(&prompt_embedding, n),
self.pipeline_score_stage(),
{
doc! {
"$project": {
self.embedded_field.clone(): 0,
},
}
},
],
None,
)
Expand Down
Loading