Skip to content

18589/ARAPReg

 
 

Repository files navigation

ARAPReg

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

Installation

The code is developed using Python 3.6 and cuda 10.2 on Ubuntu 18.04.

Note that Pytorch and Pytorch Geometric versions might change with your cuda version.

Data Preparation

We provide data for 3 datasets: DFAUST, SMAL and Bone dataset.

DFAUST

We use 4264 test shapes and 32933 training shapes from DFaust dataset. You can download the dataset here. Please place dfaust.zip in data/DFaust/raw/.

SMAL

We use 400 shapes from the family 0 in SMAL dataset. We generate shapes by the SMAL demo where the mean and the variance of the pose vectors are set to 0 and 0.2. We split them to 300 training and 100 testing samples.

You can download the generated dataset here. After downloading, please move the downloaded smal.zip to ./data/SMAL/raw.

Bone

We created a conventional bone dataset with 4 categories: tibia, pelvis, scapula and femur. Each category has about 50 shapes. We split them to 40 training and 10 testing samples. You can download the dataset here. After downloading, please move bone.zip to ./data then extract it.

Testing

Pretrained checkpoints

You can find pre-trained models and training logs in the following paths:

DFAUST: checkpoints.zip. Uncompress it under repository root will place two checkpoints in DFaust/out/arap/checkpoints/ and DFaust/out/arap/test_checkpoints/.

SMAL: smal_ckpt.zip. Move it to ./work_dir/SMAL/out, then extract it.

Bone: bone_ckpt.zip. Move it to ./work_dir, then extract it. It contains checkpoints for 4 bone categories.

Run testing

After putting pre-trained checkpoints to their corresponding paths, you can run the following scripts to optimize latent vectors for shape reconstruction. Note that our model has the auto-decoder architecture, so there's still a latent vector training stage for testing shapes.

Note that both SMAL and Bone checkpoints were trained on a single GPU. Please keep args.distributed False in main.py. In your own training, you can use multiple GPUs.

DFAUST:

bash test_dfaust.sh

SMAL:

bash test_smal.sh

Bone:

bash test_smal.sh

Note that for bone dataset, we train and test 4 categories seperately. Currently there's tibia in the training and testing script. You can replace it with femur, pelvis or scapula to get results for other 3 categories.

Model training

To retrain our model, run the following scripts after downloading and extracting datasets.

DFAUST: Note that on DFaust, it is preferred to have multiple GPUs for better efficiency. The script on DFaust tracks the reconstruction error to avoid over-fitting.

bash train_and_test_dfaust.sh

SMAL:

bash train_smal.sh

Bone:

bash train_bone.sh

Train on a new dataset

Data preprocessing and loading scripts are in ./datasets. To train on a new dataset, please write data loading file similar to ./datasets/dfaust.py. Then add the dataset to ./datasets/meshdata.py and main.py. Finally you can write a similar training script like train_and_test_dfaust.sh.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.5%
  • Shell 3.5%