Skip to content

5tran-alexil/dbt_recharge_source

 
 

Repository files navigation

Recharge Source dbt package (Docs)

📣 What does this dbt package do?

  • Materializes Recharge staging tables, which leverage data in the format described by this ERD. These staging tables clean, test, and prepare your Recharge data from Fivetran's connector for analysis by doing the following:
    • Name columns for consistency across all packages and easier analysis
    • Adds freshness tests to source data
    • Adds column-level testing where applicable. For example, all primary keys are tested for uniqueness and non-null values.
  • Generates a comprehensive data dictionary of your Recharge data through the dbt docs site.
  • These tables are designed to work simultaneously with our Recharge transformation package.

🎯 How do I use the dbt package?

Step 1: Prerequisites

To use this dbt package, you must have the following:

  • At least one Fivetran Recharge connector syncing data into your destination.
  • A BigQuery, Snowflake, Redshift, PostgreSQL, or Databricks destination.

Databricks dispatch configuration

If you are using a Databricks destination with this package, you must add the following (or a variation of the following) dispatch configuration within your dbt_project.yml. This is required in order for the package to accurately search for macros within the dbt-labs/spark_utils then the dbt-labs/dbt_utils packages respectively.

dispatch:
  - macro_namespace: dbt_utils
    search_order: ['spark_utils', 'dbt_utils']

Step 2: Install the package (skip if also using the recharge transformation package)

If you are not using the Recharge transformation package, include the following package version in your packages.yml file. If you are installing the transform package, the source package is automatically installed as a dependency.

Include the following recharge_source package version in your packages.yml file.

TIP: Check dbt Hub for the latest installation instructions, or read dbt's Package Management documentation for more information on installing packages.

packages:
  - package: fivetran/recharge_source
    version: [">=0.1.0", "<0.2.0"] # we recommend using ranges to capture non-breaking changes automatically

Step 3: Define database and schema variables

By default, this package runs using your destination and the recharge schema. If this is not where your Recharge data is (for example, if your Recharge schema is named recharge_fivetran), add the following configuration to your root dbt_project.yml file:

vars:
  recharge_database: your_database_name
  recharge_schema: your_schema_name 

Step 4: Disable models for non-existent sources

Your Recharge connector may not sync every table that this package expects. If you do not have the ONE_TIME_PRODUCT and/or CHARGE_TAX_LINE tables synced, add the corresponding variable(s) to your root dbt_project.yml file to disable these sources:

vars:
  recharge__one_time_product_enabled: false # Disables if you do not have the ONE_TIME_PRODUCT table. Default is True.
  recharge__charge_tax_line_enabled: false # Disables if you do not have the CHARGE_TAX_LINE table. Default is True.

(Optional) Step 5: Additional configurations

Expand for configurations

Passing Through Additional Columns

This package includes all source columns defined in the macros folder. If you would like to pass through additional columns to the staging models, add the following configurations to your dbt_project.yml file. These variables allow for the pass-through fields to be aliased (alias) and casted (transform_sql) if desired, but not required. Datatype casting is configured via a sql snippet within the transform_sql key. You may add the desired sql while omitting the as field_name at the end and your custom pass-though fields will be casted accordingly. Use the below format for declaring the respective pass-through variables in your root dbt_project.yml.

vars:
    recharge__address_passthrough_columns: 
      - name: "new_custom_field"
        alias: "custom_field_name"
        transform_sql:  "cast(custom_field_name as int64)"
      - name: "a_second_field"
        transform_sql:  "cast(a_second_field as string)"
    # a similar pattern can be applied to the rest of the following variables.
    recharge__charge_passthrough_columns:
    recharge__charge_line_item_passthrough_columns: 
    recharge__order_passthrough_columns:
    recharge__order_line_passthrough_columns:
    recharge__subscription_passthrough_columns:
    recharge__subscription_history_passthrough_columns:

Changing the Build Schema

By default, this package will build the Recharge staging models within a schema titled (<target_schema> + recharge_source) in your destination. If this is not where you would like your Recharge staging data written, add the following configuration to your root dbt_project.yml file:

models:
    recharge_source:
      +schema: my_new_schema_name # leave blank for just the target_schema

Change the source table references

If an individual source table has a different name than the package expects, add the table name as it appears in your destination to the respective variable:

IMPORTANT: See this project's dbt_project.yml variable declarations to see the expected names.

vars:
    recharge_<default_source_table_name>_identifier: your_table_name 

🚨 Snowflake Users 🚨

You may need to provide the case-sensitive spelling of your source tables that are also Snowflake reserved words.

In this package, this would apply to the ORDER source. If you are receiving errors for this source, include the following in your dbt_project.yml file:

vars:
  recharge_order_identifier: '"Order"' # as an example, must include this quoting pattern and adjust for your exact casing

Note! if you have sources defined in your project's yml, the above will not work. Instead you will need to add the following where your order table is defined in your yml:

sources:
  tables:
    - name: order 
      # Add the below
      identifier: ORDER # Or what your order table is named, being mindful of casing
      quoting:
        identifier: true

(Optional) Step 6: Orchestrate your models with Fivetran Transformations for dbt Core™

Expand for more details

Fivetran offers the ability for you to orchestrate your dbt project through Fivetran Transformations for dbt Core™. Learn how to set up your project for orchestration through Fivetran in our Transformations for dbt Core™ setup guides.

🔍 Does this package have dependencies?

This dbt package is dependent on the following dbt packages. Please be aware that these dependencies are installed by default within this package. For more information on the following packages, refer to the dbt hub site.

IMPORTANT: If you have any of these dependent packages in your own packages.yml file, we highly recommend that you remove them from your root packages.yml to avoid package version conflicts.

packages:
    - package: fivetran/fivetran_utils
      version: [">=0.4.0", "<0.5.0"]

    - package: dbt-labs/dbt_utils
      version: [">=1.0.0", "<2.0.0"]

🙌 How is this package maintained and can I contribute?

Package Maintenance

The Fivetran team maintaining this package only maintains the latest version of the package. We highly recommend that you stay consistent with the latest version of the package and refer to the CHANGELOG and release notes for more information on changes across versions.

Contributions

A small team of analytics engineers at Fivetran develops these dbt packages. However, the packages are made better by community contributions!

We highly encourage and welcome contributions to this package. Check out this dbt Discourse article to learn how to contribute to a dbt package!

🏪 Are there any resources available?

  • If you have questions or want to reach out for help, please refer to the GitHub Issue section to find the right avenue of support for you.
  • If you would like to provide feedback to the dbt package team at Fivetran or would like to request a new dbt package, fill out our Feedback Form.
  • Have questions or want to be part of the community discourse? Create a post in the Fivetran community and our team along with the community can join in on the discussion!

About

Fivetran's Recharge Source dbt package

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Shell 100.0%