Skip to content

ALbur/Metric-Learning

Repository files navigation

Metric-Learning

Author: Xing EP,Ng AY,Jordan MI, et al.Distance Metric Learning,with Application to Clustering with Side-information [C]//International Conference on Neural Information Processing Systems, 2002.

Input

X: data

S: similarity constraints (in the form of a pairwise-similarity matrix)

D: disimilarity constraints (in the form of a pairwise-disimilarity matrix)

A: initial distance metric matrix

w: a weight vector originated from similar data (see paper) upper bound of constraint C1 (the sum of pairwise distance bound)

maxiter: maximum iterations

Output

A: the solution of distance metric matrix

converged: indicator of convergence

iters: iterations passed until convergence

中文:

X:数据

S:相似性约束(以成对相似性矩阵的形式)

D:相异性约束(以成对相异矩阵的形式)

A:初始距离度量矩阵

w:来自类似数据的权重向量(见论文)

t:约束 C1 的上限(成对距离的总和)

maxiter:最大迭代次数

iter_projection_new2(X, S, D, A, w, t, maxiter)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages