Author: Xing EP,Ng AY,Jordan MI, et al.Distance Metric Learning,with Application to Clustering with Side-information [C]//International Conference on Neural Information Processing Systems, 2002.
Input
X: data
S: similarity constraints (in the form of a pairwise-similarity matrix)
D: disimilarity constraints (in the form of a pairwise-disimilarity matrix)
A: initial distance metric matrix
w: a weight vector originated from similar data (see paper) upper bound of constraint C1 (the sum of pairwise distance bound)
maxiter: maximum iterations
Output
A: the solution of distance metric matrix
converged: indicator of convergence
iters: iterations passed until convergence
中文:
X:数据
S:相似性约束(以成对相似性矩阵的形式)
D:相异性约束(以成对相异矩阵的形式)
A:初始距离度量矩阵
w:来自类似数据的权重向量(见论文)
t:约束 C1 的上限(成对距离的总和)
maxiter:最大迭代次数
iter_projection_new2(X, S, D, A, w, t, maxiter)