Skip to content

Commit

Permalink
Avoid warning when simulating with default parameters
Browse files Browse the repository at this point in the history
  • Loading branch information
dweindl committed Jan 16, 2024
1 parent 7179189 commit ce7a3d9
Showing 1 changed file with 30 additions and 48 deletions.
78 changes: 30 additions & 48 deletions python/sdist/amici/petab/simulations.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,11 +106,14 @@ def simulate_petab(
Experimental data. Parameters are inserted in-place for simulation.
:param parameter_mapping:
Optional precomputed PEtab parameter mapping for efficiency, as
generated by :py:func:`create_parameter_mapping`.
generated by :py:func:`create_parameter_mapping` with
``scaled_parameters=True``.
:param scaled_parameters:
If ``True``, ``problem_parameters`` are assumed to be on the scale
provided in the PEtab parameter table and will be unscaled.
If ``False``, they are assumed to be in linear scale.
If `parameter_mapping` is provided, this must match the value of
`scaled_parameters` used to generate the mapping.
:param log_level:
Log level, see :mod:`amici.logging` module.
:param num_threads:
Expand Down Expand Up @@ -139,14 +142,6 @@ def simulate_petab(
if solver is None:
solver = amici_model.getSolver()

# Switch to scaled parameters.
problem_parameters = _default_scaled_parameters(
petab_problem=petab_problem,
problem_parameters=problem_parameters,
scaled_parameters=scaled_parameters,
)
scaled_parameters = True

# number of amici simulations will be number of unique
# (preequilibrationConditionId, simulationConditionId) pairs.
# Can be optimized by checking for identical condition vectors.
Expand All @@ -164,10 +159,35 @@ def simulate_petab(
parameter_mapping = create_parameter_mapping(
petab_problem=petab_problem,
simulation_conditions=simulation_conditions,
scaled_parameters=scaled_parameters,
# we will always use scaled parameters internally
scaled_parameters=True,
amici_model=amici_model,
)

if problem_parameters is None:
# scaled PEtab nominal values
problem_parameters = dict(
zip(
petab_problem.x_ids,
petab_problem.x_nominal_scaled,
)
)
# depending on `fill_fixed_parameters` for parameter mapping, the
# parameter mapping may contain values instead of symbols for fixed
# parameters. In this case, we need to filter them here to avoid
# warnings in `fill_in_parameters`.
free_parameters = parameter_mapping.free_symbols
problem_parameters = {
par_id: par_value
for par_id, par_value in problem_parameters.items()
if par_id in free_parameters
}

elif not scaled_parameters:
problem_parameters = petab_problem.scale_parameters(problem_parameters)

scaled_parameters = True

# Get edatas
if edatas is None:
# Generate ExpData with all condition-specific information
Expand Down Expand Up @@ -460,41 +480,3 @@ def rdatas_to_simulation_df(
)

return df.rename(columns={MEASUREMENT: SIMULATION})


def _default_scaled_parameters(
petab_problem: petab.Problem,
problem_parameters: Optional[Dict[str, float]] = None,
scaled_parameters: bool = False,
) -> Optional[Dict[str, float]]:
"""
Helper method to handle an unscaled or unspecified parameter vector.
The parameter vector defaults to the nominal values in the PEtab
parameter table.
Unscaled parameter values are scaled.
:param petab_problem:
The PEtab problem.
:param problem_parameters:
Keys are PEtab parameter IDs, values are parameter values on the scale
defined in the PEtab parameter table. Defaults to the nominal values in
the PEtab parameter table.
:param scaled_parameters:
Whether `problem_parameters` are on the scale defined in the PEtab
parameter table.
:return:
The scaled parameter vector.
"""
if problem_parameters is None:
problem_parameters = dict(
zip(
petab_problem.x_ids,
petab_problem.x_nominal_scaled,
)
)
elif not scaled_parameters:
problem_parameters = petab_problem.scale_parameters(problem_parameters)
return problem_parameters

0 comments on commit ce7a3d9

Please sign in to comment.