Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

start of a simple 2-T gamma-law EOS #1446

Open
wants to merge 6 commits into
base: development
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions EOS/gamma_law_2T/Make.package
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
CEXE_headers += actual_eos.H
26 changes: 26 additions & 0 deletions EOS/gamma_law_2T/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# gamma_law_2T

This is an equation of state for a 2-temperature fluid. We assume
that there is a composition that has neutrals and ions, with
effectively the same mass. We call these collectively the "heavies".
The electrons are assumed to have zero mass but still contribute to
the thermodynamics.

We assume that there is a single gamma for all components of the EOS.

At the moment, we assume only a single neutral (this has Z = 0) and a
single ion (this has Z > 0). But this can be generalized as needed.

This also requires 2 pieces of auxiliary data:

* the specific internal energy of all the "heavies"
* the specific internal energy of the electrons.

It is suggested that you use the `general_null` network with the
`gammalaw_2T.net` inputs file.

There is really no single temperature, so inputs like `eos_input_re`
that want to return a unique temperature will instead get an effective
average temperature, such that calling the EOS with this average
temperature will give the same input e.

3 changes: 3 additions & 0 deletions EOS/gamma_law_2T/_parameters
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
@namespace: eos

eos_gamma real 5.d0/3.d0
302 changes: 302 additions & 0 deletions EOS/gamma_law_2T/actual_eos.H
Original file line number Diff line number Diff line change
@@ -0,0 +1,302 @@
#ifndef ACTUAL_EOS_H
#define ACTUAL_EOS_H

#include <string>
#include <extern_parameters.H>
#include <fundamental_constants.H>
#include <cmath>

using namespace eos_rp;

// This is a constant gamma equation of state, using an ideal gas.
//
// The gas may either be completely ionized or completely neutral.
//
// The ratio of specific heats (gamma) is allowed to vary. NOTE: the
// expression for entropy is only valid for an ideal MONATOMIC gas
// (gamma = 5/3).

const std::string eos_name = "gamma_law_2T";

inline
void actual_eos_init() {

// make sure we have the needed aux data

// ensure that there are only 2 species, one with Z = 0

// ensure that the species have the same atomic mass

// constant ratio of specific heats
if (eos_gamma <= 0.0) {
amrex::Error("gamma_const cannot be < 0");
}

}


template <typename I>
AMREX_GPU_HOST_DEVICE AMREX_INLINE
bool is_input_valid (I input)
{
static_assert(std::is_same<I, eos_input_t>::value, "input must be an eos_input_t");

bool valid = true;

if (input == eos_input_th) {
valid = false;
} else if (input == eos_input_rh) {
valid = false;
} else if (input == eos_input_tp) {
valid = false;
} else if (input == eos_input_ps) {
valid = false;
} else if (input == eos_input_ph) {
valid = false;
} else if (input == eos_input_th) {
valid = false;
}

return valid;
}


template <typename I, typename T>
AMREX_GPU_HOST_DEVICE AMREX_INLINE
void actual_eos (I input, T& state)
{
static_assert(std::is_same<I, eos_input_t>::value, "input must be an eos_input_t");

// for the moment, we will assume just ions and neutrals
static_assert(NumSpec == 2);

// get the index of the ions
short i_ion{-1};
short i_neut{-1};
if (zion[0] > 0) {
i_ion = 0;
i_neut = 1;
} else {
i_ion = 1;
i_neut = 0;
}

// Get the mass of a nucleon from m_u.
const Real m_nucleon = C::m_u;

// The mean molecular weight here is constructed to allow us to
// define an average temperature. This is not otherwise used in the
// thermodynamics.

if constexpr (has_xn<T>::value) {
state.mu = (zion[i_ion] + 1) * state.xn[i_ion] / aion[i_ion] +
state.xn[i_neut] / aion[i_neut];
state.mu = 1.0 / state.mu
}

// we can always get the heavy and electron temperatures, since the
// aux data is their internal energies. Note: this assumes that
// aion[i_ion] == aion[i_neut]

Real T_h = aion[i_ion] * m_nucleon * (eos_gamma - 1.0_rt) /
((state.xn[i_ion] + state.xn[i_neut]) * C::k_B) * state.aux[AuxZero::e_h];

Real T_e = aion[i_ion] * m_nucleon * (eos_gamma - 1.0_rt) /
(state.xn[i_ion] * zion[i_ion] * C::k_B) * state.aux[AuxZero::e_e];

// For all EOS input modes EXCEPT eos_input_rt, first compute dens
// and temp as needed from the inputs.

switch (input)
{

case eos_input_rt:

// dens, xmass are inputs, and we have T_h and T_e from above

// We don't need to do anything here
break;

case eos_input_rh:

// dens, enthalpy, and xmass are inputs

#ifndef AMREX_USE_GPU
amrex::Error("EOS: eos_input_tp has not been implemented gamma_law_2T EOS.");
#endif

break;

case eos_input_tp:

// temp, pres, and xmass are inputs

#ifndef AMREX_USE_GPU
amrex::Error("EOS: eos_input_tp has not been implemented gamma_law_2T EOS.");
#endif

break;

case eos_input_rp:

// dens, pres, and xmass are inputs
// we already have the 2 temperatures from above

break;

case eos_input_re:

// dens, energy, and xmass are inputs
// we already have the 2 temperatures from above

break;

case eos_input_ps:

// pressure, entropy, and xmass are inputs

#ifndef AMREX_USE_GPU
amrex::Error("EOS: eos_input_ps has not been implemented gamma_law_2T EOS.");
#endif

break;

case eos_input_ph:

// pressure, enthalpy and xmass are inputs

#ifndef AMREX_USE_GPU
amrex::Error("EOS: eos_input_ph has not been implemented gamma_law_2T EOS.");
#endif

break;

case eos_input_th:

// temperature, enthalpy and xmass are inputs

// This system is underconstrained.

#ifndef AMREX_USE_GPU
amrex::Error("EOS: eos_input_th is not a valid input for the gamma law EOS.");
#endif

break;

default:

#ifndef AMREX_USE_GPU
amrex::Error("EOS: invalid input.");
#endif

break;

}

// Now we have the density and temperature (and mass fractions)

// Compute the pressure simply from the ideal gas law, and the
// specific internal energy using the gamma-law EOS relation.
Real pressure = state.rho * state.T * C::k_B / (state.mu * m_nucleon);
Real energy = pressure / (eos_gamma - 1.0) * rhoinv;
if constexpr (has_pressure<T>::value) {
state.p = pressure;
}
if constexpr (has_energy<T>::value) {
state.e = energy;
}

// enthalpy is h = e + p/rho
if constexpr (has_enthalpy<T>::value) {
state.h = energy + pressure * rhoinv;
}

// entropy (per gram) of an ideal monoatomic gas (the Sackur-Tetrode equation)
// NOTE: this expression is only valid for gamma = 5/3.
if constexpr (has_entropy<T>::value) {
const Real fac = 1.0 / std::pow(2.0 * M_PI * C::hbar * C::hbar, 1.5);

state.s = (C::k_B / (state.mu * m_nucleon)) *
(2.5 + std::log((std::pow(state.mu * m_nucleon, 2.5) * rhoinv) *
std::pow(C::k_B * state.T, 1.5) * fac));
}

// Compute the thermodynamic derivatives and specific heats
if constexpr (has_pressure<T>::value) {
state.dpdT = state.p * Tinv;
state.dpdr = state.p * rhoinv;
}
if constexpr (has_energy<T>::value) {
state.dedT = state.e * Tinv;
state.dedr = 0.0;
}
if constexpr (has_entropy<T>::value) {
state.dsdT = 1.5 * (C::k_B / (state.mu * m_nucleon)) * Tinv;
state.dsdr = - (C::k_B / (state.mu * m_nucleon)) * rhoinv;
}
if constexpr (has_enthalpy<T>::value) {
state.dhdT = state.dedT + state.dpdT * rhoinv;
state.dhdr = 0.0;
}

if constexpr (has_xne_xnp<T>::value) {
state.xne = 0.0;
state.xnp = 0.0;
}
if constexpr (has_eta<T>::value) {
state.eta = 0.0;
}
if constexpr (has_pele_ppos<T>::value) {
state.pele = 0.0;
state.ppos = 0.0;
}

if constexpr (has_energy<T>::value) {
state.cv = state.dedT;

if constexpr (has_pressure<T>::value) {
state.cp = eos_gamma * state.cv;

state.gam1 = eos_gamma;

state.dpdr_e = state.dpdr - state.dpdT * state.dedr * (1.0 / state.dedT);
state.dpde = state.dpdT * (1.0 / state.dedT);

// sound speed
state.cs = std::sqrt(eos_gamma * state.p * rhoinv);
if constexpr (has_G<T>::value) {
state.G = 0.5 * (1.0 + eos_gamma);
}
}
}

if constexpr (has_dpdA<T>::value) {
state.dpdA = - state.p * (1.0 / state.abar);
}
if constexpr (has_dedA<T>::value) {
state.dedA = - state.e * (1.0 / state.abar);
}

if (eos_assume_neutral) {
if constexpr (has_dpdZ<T>::value) {
state.dpdZ = 0.0;
}
if constexpr (has_dedZ<T>::value) {
state.dedZ = 0.0;
}
} else {
if constexpr (has_dpdZ<T>::value) {
state.dpdZ = state.p * (1.0 / (1.0 + state.zbar));
}
if constexpr (has_dedZ<T>::value) {
state.dedZ = state.e * (1.0/(1.0 + state.zbar));
}
}
}

inline
void actual_eos_finalize() {

}

#endif
10 changes: 10 additions & 0 deletions networks/general_null/gammalaw_2T.net
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
# this is the null description for a network containing H only
#

# name short-name aion zion
neutrals N 1.0 0.0
ions I 1.0 1.0

# auxiliary variables
__aux_e_h
__aux_e_e
Loading