-
Notifications
You must be signed in to change notification settings - Fork 55
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #51 from johan-alfven-arm/master
Adding models from Arm internal zoo
- Loading branch information
Showing
6 changed files
with
119 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# image_classification/efficientnet_lite0_224/tflite_int8 | ||
|
||
## Description | ||
This work is developed from the codebase located [here](https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/README.md) and is under an Apache 2 license available [here](https://github.com/tensorflow/tpu/blob/master/LICENSE). | ||
|
||
The original networks, which we have optimized via tooling but left otherwise unchanged are copyright the tensorflow authors as in the license file linked. | ||
|
||
## License | ||
[Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) | ||
|
||
## Network Information | ||
| Network Information | Value | | ||
|---------------------|-------| | ||
| Framework | TensorFlow Lite | | ||
| SHA-1 Hash | 35f9dafaf25f8abf2225265b0724979a68bf6d67 | | ||
| Size (Bytes) | 5422760 | | ||
| Provenance | https://storage.googleapis.com/cloud-tpu-checkpoints/efficientnet/lite/efficientnet-lite0.tar.gz | | ||
| Paper | https://arxiv.org/pdf/1905.11946.pdf | | ||
|
||
|
||
## Accuracy | ||
Dataset: ILSVRC 2012 | ||
|
||
| Metric | Value | | ||
|--------|-------| | ||
| top_1_accuracy | 0.744 | | ||
|
||
## Network Inputs | ||
| Input Node Name | Shape | Example Path | Example Type | Example Use Case | | ||
|-----------------|-------|--------------|------------------|--------------| | ||
| images | (1, 224, 224, 3) | models/image_classification/efficientnet_lite0_224/tflite_int8/testing_input | | Typical ImageNet-style single-batch cat resized to 224x224. | | ||
|
||
## Network Outputs | ||
| Output Node Name | Shape | Description | | ||
|------------------|-------|-------------| | ||
| Softmax | (1, 1000) | Probability distribution over 1000 ImageNet classes with uint8 values. | | ||
|
Binary file added
BIN
+5.17 MB
models/experimental/efficientnet_lite0_224/efficientnet_lite0_224.tflite
Binary file not shown.
38 changes: 38 additions & 0 deletions
38
models/experimental/yolov3_416_416_backbone_mltools_int8/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# object_detection/yolo_v3_backbone_mltools/tflite_int8 | ||
|
||
## Description | ||
Backbone of the Yolo v3 model with an input size of 416 x 416. The backbone is quantized with an int8 precision using the first 1000 images of the COCO 2014 training set for calibration. The DarkNet original pre-trained weights are used as initial weights. | ||
|
||
## License | ||
[MIT](https://spdx.org/licenses/MIT.html) | ||
[MIT]https://github.com/zzh8829/yolov3-tf2/blob/master/LICENSE | ||
|
||
## Network Information | ||
| Network Information | Value | | ||
|---------------------|-------| | ||
| Framework | TensorFlow Lite | | ||
| SHA-1 Hash | 4adc0b716c5af29d957396fab2bcbc460e8b94ee | | ||
| Size (Bytes) | 62958128 | | ||
| Provenance | https://confluence.arm.com/display/MLENG/Yolo+v3 | | ||
| Paper | https://pjreddie.com/media/files/papers/YOLOv3.pdf | | ||
|
||
|
||
## Accuracy | ||
Dataset: coco-val-2014 | ||
|
||
| Metric | Value | | ||
|--------|-------| | ||
| mAP50 | 0.563 | | ||
|
||
## Network Inputs | ||
| Input Node Name | Shape | Example Path | Example Type | Example Use Case | | ||
|-----------------|-------|--------------|------------------|--------------| | ||
| input_int8 | (1, 416, 416, 3) | models/object_detection/yolo_v3_backbone_mltools/tflite_int8/testing_input/0.npy | int8 | | | ||
|
||
## Network Outputs | ||
| Output Node Name | Shape | Description | | ||
|------------------|-------|-------------| | ||
| Identity_int8 | (1, 13, 13, 3, 85) | None | | ||
| Identity_1_int8 | (1, 26, 26, 3, 85) | None | | ||
| Identity_2_int8 | (1, 52, 52, 3, 85) | None | | ||
|
Binary file added
BIN
+60 MB
...rimental/yolov3_416_416_backbone_mltools_int8/yolov3_416_416_backbone_mltools_int8.tflite
Binary file not shown.
44 changes: 44 additions & 0 deletions
44
models/experimental/yolov3_tiny_int8_pruned_backbone_only/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# object_detection/yolo_v3_tiny/tflite_pruned_backbone_only_int8 | ||
|
||
## Description | ||
YOLO v3 Tiny is the light version of YOLO v3 with less layers for object detection and classification. | ||
This model contains only the backbone, and using Darknet pre-trained weights. | ||
|
||
## License | ||
[MIT License](https://github.com/zzh8829/yolov3-tf2/blob/master/LICENSE) | ||
|
||
## Network Information | ||
| Network Information | Value | | ||
|---------------------|-------| | ||
| Framework | TensorFlow Lite | | ||
| SHA-1 Hash | ec4c5ad5c92fe6bb7eb750011b0b1e322a15ba19 | | ||
| Size (Bytes) | 8963352 | | ||
| Provenance | https://github.com/zzh8829/yolov3-tf2 + https://pjreddie.com/media/files/yolov3-tiny.weights | | ||
| Paper | https://arxiv.org/pdf/1804.02767.pdf | | ||
|
||
|
||
## DataSet | ||
| Dataset Information | Value | | ||
|--------|-------| | ||
| Name | Microsoft Coco 2014 | | ||
| Description | COCO is a large-scale object detection, segmentation, and captioning dataset. | | ||
| Link | https://cocodataset.org/#home | | ||
|
||
|
||
## Accuracy | ||
|
||
| Metric | Value | | ||
|--------|-------| | ||
| mAP | 0.345 | | ||
|
||
## Network Inputs | ||
| Input Node Name | Shape | Type | Example Path | Example Type | Example Shape | Example Use Case | | ||
|-----------------|-------|-------|--------------|-------|-------|-----------------| | ||
| serving_default_input:0 | (1, 416, 416, 3) | int8 | models/object_detection/yolo_v3_tiny/tflite_pruned_backbone_only_int8/testing_input/serving_default_input:0 | int8 | [1, 416, 416, 3] | Random input for model regression. | | ||
|
||
## Network Outputs | ||
| Output Node Name | Shape | Type | Example Path | Example Type | Example Shape | Example Use Case | | ||
|-----------------|-------|-------|--------------|-------|-------|-----------------| | ||
| StatefulPartitionedCall:0 | (1, 13, 13, 3, 85) | int8 | models/object_detection/yolo_v3_tiny/tflite_pruned_backbone_only_int8/testing_output/StatefulPartitionedCall:0 | int8 | [1, 13, 13, 3, 85] | output for model regression. | | ||
| StatefulPartitionedCall:1 | (1, 26, 26, 3, 85) | int8 | models/object_detection/yolo_v3_tiny/tflite_pruned_backbone_only_int8/testing_output/StatefulPartitionedCall:1 | int8 | [1, 26, 26, 3, 85] | output for model regression. | | ||
|
Binary file added
BIN
+8.55 MB
...mental/yolov3_tiny_int8_pruned_backbone_only/yolov3_tiny_int8_pruned_backbone_only.tflite
Binary file not shown.