-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
aaad27b
commit 1737131
Showing
99 changed files
with
1,233 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
/logs/ | ||
/0try/ | ||
/_pycache_/ | ||
/Semantic_Segmentation_Dataset/ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,29 +1,20 @@ | ||
# README # | ||
Instructions: | ||
|
||
This README would normally document whatever steps are necessary to get your application up and running. | ||
To train the model | ||
|
||
```python train.py --help``` | ||
eg. | ||
|
||
### What is this repository for? ### | ||
```python train.py --model densenet --expname FINAL --bs 4 --useGPU True --dataset Semantic_Segmentation_Dataset/``` | ||
|
||
* Quick summary | ||
* Version | ||
* [Learn Markdown](https://bitbucket.org/tutorials/markdowndemo) | ||
|
||
### How do I get set up? ### | ||
To test the result: | ||
|
||
```python test.py --model densenet --load best_model.pkl --bs 4 --dataset Semantic_Segmentation_Dataset/``` | ||
|
||
* Summary of set up | ||
* Configuration | ||
* Dependencies | ||
* Database configuration | ||
* How to run tests | ||
* Deployment instructions | ||
|
||
### Contribution guidelines ### | ||
|
||
* Writing tests | ||
* Code review | ||
* Other guidelines | ||
The requirements.txt file contains all the packages necessary for the code to run. We have also included an environment.yml file of the system which runs the code successfully. Please refer to that file if there is an error with specific packages. | ||
|
||
|
||
### Who do I talk to? ### | ||
|
||
* Repo owner or admin | ||
* Other community or team contact |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Mon Sep 2 11:47:44 2019 | ||
@author: Aayush | ||
This file contains the dataloader and the augmentations and preprocessing done | ||
Required Preprocessing for all images (test, train and validation set): | ||
1) Gamma correction by a factor of 0.8 | ||
2) local Contrast limited adaptive histogram equalization algorithm with clipLimit=1.5, tileGridSize=(8,8) | ||
3) Normalization | ||
Train Image Augmentation Procedure Followed | ||
1) Random horizontal flip with 50% probability. | ||
2) Starburst pattern augmentation with 20% probability. | ||
3) Random length lines augmentation around a random center with 20% probability. | ||
4) Gaussian blur with kernel size (7,7) and random sigma with 20% probability. | ||
5) Translation of image and labels in any direction with random factor less than 20. | ||
""" | ||
|
||
import numpy as np | ||
import torch | ||
from torch.utils.data import Dataset | ||
import os | ||
from PIL import Image | ||
from torchvision import transforms | ||
import cv2 | ||
import random | ||
import os.path as osp | ||
from utils import one_hot2dist | ||
import copy | ||
|
||
transform = transforms.Compose( | ||
[transforms.ToTensor(), | ||
transforms.Normalize([0.5], [0.5])]) | ||
|
||
#%% | ||
class RandomHorizontalFlip(object): | ||
def __call__(self, img,label): | ||
if random.random() < 0.5: | ||
return img.transpose(Image.FLIP_LEFT_RIGHT),\ | ||
label.transpose(Image.FLIP_LEFT_RIGHT) | ||
return img,label | ||
|
||
class Starburst_augment(object): | ||
## We have generated the starburst pattern from a train image 000000240768.png | ||
## Please follow the file Starburst_generation_from_train_image_000000240768.pdf attached in the folder | ||
## This procedure is used in order to handle people with multiple reflections for glasses | ||
## a random translation of mask of starburst pattern | ||
def __call__(self, img): | ||
x=np.random.randint(1, 40) | ||
y=np.random.randint(1, 40) | ||
mode = np.random.randint(0, 2) | ||
starburst=Image.open('starburst_black.png').convert("L") | ||
if mode == 0: | ||
starburst = np.pad(starburst, pad_width=((0, 0), (x, 0)), mode='constant') | ||
starburst = starburst[:, :-x] | ||
if mode == 1: | ||
starburst = np.pad(starburst, pad_width=((0, 0), (0, x)), mode='constant') | ||
starburst = starburst[:, x:] | ||
|
||
img[92+y:549+y,0:400]=np.array(img)[92+y:549+y,0:400]*((255-np.array(starburst))/255)+np.array(starburst) | ||
return Image.fromarray(img) | ||
|
||
def getRandomLine(xc, yc, theta): | ||
x1 = xc - 50*np.random.rand(1)*(1 if np.random.rand(1) < 0.5 else -1) | ||
y1 = (x1 - xc)*np.tan(theta) + yc | ||
x2 = xc - (150*np.random.rand(1) + 50)*(1 if np.random.rand(1) < 0.5 else -1) | ||
y2 = (x2 - xc)*np.tan(theta) + yc | ||
return x1, y1, x2, y2 | ||
|
||
class Gaussian_blur(object): | ||
def __call__(self, img): | ||
sigma_value=np.random.randint(2, 7) | ||
return Image.fromarray(cv2.GaussianBlur(img,(7,7),sigma_value)) | ||
|
||
class Translation(object): | ||
def __call__(self, base,mask): | ||
factor_h = 2*np.random.randint(1, 20) | ||
factor_v = 2*np.random.randint(1, 20) | ||
mode = np.random.randint(0, 4) | ||
# print (mode,factor_h,factor_v) | ||
if mode == 0: | ||
aug_base = np.pad(base, pad_width=((factor_v, 0), (0, 0)), mode='constant') | ||
aug_mask = np.pad(mask, pad_width=((factor_v, 0), (0, 0)), mode='constant') | ||
aug_base = aug_base[:-factor_v, :] | ||
aug_mask = aug_mask[:-factor_v, :] | ||
if mode == 1: | ||
aug_base = np.pad(base, pad_width=((0, factor_v), (0, 0)), mode='constant') | ||
aug_mask = np.pad(mask, pad_width=((0, factor_v), (0, 0)), mode='constant') | ||
aug_base = aug_base[factor_v:, :] | ||
aug_mask = aug_mask[factor_v:, :] | ||
if mode == 2: | ||
aug_base = np.pad(base, pad_width=((0, 0), (factor_h, 0)), mode='constant') | ||
aug_mask = np.pad(mask, pad_width=((0, 0), (factor_h, 0)), mode='constant') | ||
aug_base = aug_base[:, :-factor_h] | ||
aug_mask = aug_mask[:, :-factor_h] | ||
if mode == 3: | ||
aug_base = np.pad(base, pad_width=((0, 0), (0, factor_h)), mode='constant') | ||
aug_mask = np.pad(mask, pad_width=((0, 0), (0, factor_h)), mode='constant') | ||
aug_base = aug_base[:, factor_h:] | ||
aug_mask = aug_mask[:, factor_h:] | ||
return Image.fromarray(aug_base), Image.fromarray(aug_mask) | ||
|
||
class Line_augment(object): | ||
def __call__(self, base): | ||
yc, xc = (0.3 + 0.4*np.random.rand(1))*base.shape | ||
aug_base = copy.deepcopy(base) | ||
num_lines = np.random.randint(1, 10) | ||
for i in np.arange(0, num_lines): | ||
theta = np.pi*np.random.rand(1) | ||
x1, y1, x2, y2 = getRandomLine(xc, yc, theta) | ||
aug_base = cv2.line(aug_base, (x1, y1), (x2, y2), (255, 255, 255), 4) | ||
aug_base = aug_base.astype(np.uint8) | ||
return Image.fromarray(aug_base) | ||
|
||
class MaskToTensor(object): | ||
def __call__(self, img): | ||
return torch.from_numpy(np.array(img, dtype=np.int32)).long() | ||
|
||
|
||
class IrisDataset(Dataset): | ||
def __init__(self, filepath, split='train',transform=None,**args): | ||
self.transform = transform | ||
self.filepath= osp.join(filepath,split) | ||
self.split = split | ||
listall = [] | ||
|
||
for file in os.listdir(osp.join(self.filepath,'images')): | ||
if file.endswith(".png"): | ||
listall.append(file.strip(".png")) | ||
self.list_files=listall | ||
|
||
self.testrun = args.get('testrun') | ||
|
||
#PREPROCESSING STEP FOR ALL TRAIN, VALIDATION AND TEST INPUTS | ||
#local Contrast limited adaptive histogram equalization algorithm | ||
self.clahe = cv2.createCLAHE(clipLimit=1.5, tileGridSize=(8,8)) | ||
|
||
def __len__(self): | ||
if self.testrun: | ||
return 10 | ||
return len(self.list_files) | ||
|
||
def __getitem__(self, idx): | ||
imagepath = osp.join(self.filepath,'images',self.list_files[idx]+'.png') | ||
pilimg = Image.open(imagepath).convert("L") | ||
H, W = pilimg.width , pilimg.height | ||
|
||
#PREPROCESSING STEP FOR ALL TRAIN, VALIDATION AND TEST INPUTS | ||
#Fixed gamma value for | ||
table = 255.0*(np.linspace(0, 1, 256)**0.8) | ||
pilimg = cv2.LUT(np.array(pilimg), table) | ||
|
||
|
||
if self.split != 'test': | ||
labelpath = osp.join(self.filepath,'labels',self.list_files[idx]+'.npy') | ||
label = np.load(labelpath) | ||
label = np.resize(label,(W,H)) | ||
label = Image.fromarray(label) | ||
|
||
if self.transform is not None: | ||
if self.split == 'train': | ||
if random.random() < 0.2: | ||
pilimg = Starburst_augment()(np.array(pilimg)) | ||
if random.random() < 0.2: | ||
pilimg = Line_augment()(np.array(pilimg)) | ||
if random.random() < 0.2: | ||
pilimg = Gaussian_blur()(np.array(pilimg)) | ||
if random.random() < 0.4: | ||
pilimg, label = Translation()(np.array(pilimg),np.array(label)) | ||
|
||
img = self.clahe.apply(np.array(np.uint8(pilimg))) | ||
img = Image.fromarray(img) | ||
|
||
if self.transform is not None: | ||
if self.split == 'train': | ||
img, label = RandomHorizontalFlip()(img,label) | ||
img = self.transform(img) | ||
|
||
|
||
if self.split != 'test': | ||
## This is for boundary aware cross entropy calculation | ||
spatialWeights = cv2.Canny(np.array(label),0,3)/255 | ||
spatialWeights=cv2.dilate(spatialWeights,(3,3),iterations = 1)*20 | ||
|
||
##This is the implementation for the surface loss | ||
# Distance map for each class | ||
distMap = [] | ||
for i in range(0, 4): | ||
distMap.append(one_hot2dist(np.array(label)==i)) | ||
distMap = np.stack(distMap, 0) | ||
# spatialWeights=np.float32(distMap) | ||
|
||
|
||
if self.split == 'test': | ||
##since label, spatialWeights and distMap is not needed for test images | ||
return img,0,self.list_files[idx],0,0 | ||
|
||
label = MaskToTensor()(label) | ||
return img, label, self.list_files[idx],spatialWeights,np.float32(distMap) | ||
|
||
if __name__ == "__main__": | ||
import matplotlib.pyplot as plt | ||
ds = IrisDataset('Semantic_Segmentation_Dataset',split='train',transform=transform) | ||
# for i in range(1000): | ||
img, label, idx,x,y= ds[0] | ||
plt.subplot(121) | ||
plt.imshow(np.array(label)) | ||
plt.subplot(122) | ||
plt.imshow(np.array(img)[0,:,:],cmap='gray') |
Oops, something went wrong.