Skip to content

Commit

Permalink
Example showing how to use BlackJAX to sample from the word "BlackJAX" (
Browse files Browse the repository at this point in the history
blackjax-devs#637)

* Plotting BlackJAX with BlackJAX

* Plotting BlackJAX with BlackJAX

* Fix trailing white space
  • Loading branch information
AdrienCorenflos authored Feb 17, 2024
1 parent 5402335 commit bb225d3
Show file tree
Hide file tree
Showing 4 changed files with 200 additions and 0 deletions.
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
![PyPI version](https://img.shields.io/pypi/v/blackjax)


![BlackJAX animation: sampling BlackJAX with BlackJAX](./docs/examples/scatter.gif)

## What is BlackJAX?

BlackJAX is a library of samplers for [JAX](https://github.com/google/jax) that
Expand Down
Binary file added docs/examples/data/blackjax.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
198 changes: 198 additions & 0 deletions docs/examples/howto_reproduce_the_blackjax_image.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
---
jupyter:
jupytext:
text_representation:
extension: .md
format_name: markdown
format_version: '1.3'
jupytext_version: 1.16.1
kernelspec:
display_name: Python 3
language: python
name: python3
---

# Reproducing the front page image of the repository

The front page image of the repository is a sampled version of the following image:

![front_page_image](./data/blackjax.png)

Here we show how we can sample from the uniform distribution corresponding to black pixels in the image.


## Make the image into a numpy array

```python
import matplotlib
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams["axes.spines.right"] = False
plt.rcParams["axes.spines.top"] = False
matplotlib.rcParams['animation.embed_limit'] = 25
```

```python
# Load the image
im = mpimg.imread('./data/blackjax.png')

# Convert to mask
im = np.amax(im[:, :, :2], 2) < 0.5

# Convert back to float
im = im.astype(float)
```

## The sampling procedure

To sample from **BlackJAX**, we form a bridge between the uniform distribution over the full image, corresponding to a 2D domain of size (80, 250) and the uniform distribution over the black pixels.

Formally, this corresponds to a prior distribution $p_0 \sim U([[0, 79]] \times [[0, 249]]$ and a target distribution $p_1(x) \propto \mathbb{1}_{x \in \text{image}}$.

```python
import jax
import jax.numpy as jnp
from datetime import date

rng_key = jax.random.key(int(date.today().strftime("%Y%m%d")))

```

```python
# Sample from the uniform distribution over the domain
key_init, rng_key = jax.random.split(rng_key)
n_samples = 5_000
INF = 1e2 # A large number
jax_im = jnp.array(im.astype(float))

key_init_xs, key_init_ys = jax.random.split(key_init)
xs_init = jax.random.uniform(key_init_xs, (n_samples,), minval=0, maxval=80)
ys_init = jax.random.randint(key_init_ys, (n_samples,), minval=0, maxval=250)

zs_init = np.stack([xs_init, ys_init], axis=1)


# Set the prior and likelihood
def prior_logpdf(z): return 0.0


# The pdf is uniform, so the logpdf is constant on the domain and negative infinite outside
def log_likelihood(z):
x, y = z
# The pixel is black if x, y falls within the image, which means that their integer part is a valid index
floor_x, floor_y = jnp.floor(x), jnp.floor(y)
floor_x, floor_y = jnp.astype(floor_x, jnp.int32), jnp.astype(floor_y, jnp.int32)
out_of_bounds = (floor_x < 0) | (floor_x >= 80) | (floor_y < 0) | (floor_y >= 250)
value = jax.lax.cond(out_of_bounds,
lambda *_: -INF,
lambda arg: -INF * (jax_im[arg[0], arg[1]] == 0),
operand=(floor_x, floor_y))
return value


```

## The sampling procedure

We will a RWMH sampler within SMC routine to sample from the target distribution.
For more information we refer to the [documentation](https://blackjax-devs.github.io/sampling-book/algorithms/TemperedSMC.html) specific to SMC


```python
import blackjax
import blackjax.smc.resampling as resampling

# Temperature schedule
n_temperatures = 150
lambda_schedule = np.logspace(-3, 0, n_temperatures)

# The proposal distribution is a random walk with a fixed scale
scale = 0.5 # The scale of the proposal distribution
normal = blackjax.mcmc.random_walk.normal(scale * jnp.ones((2,)))

rw_kernel = blackjax.additive_step_random_walk.build_kernel()
rw_init = blackjax.additive_step_random_walk.init
rw_params = {"random_step": normal}

tempered = blackjax.tempered_smc(
prior_logpdf,
log_likelihood,
rw_kernel,
rw_init,
rw_params,
resampling.systematic,
num_mcmc_steps=5,
)

initial_smc_state = tempered.init(zs_init)

```

## Run the SMC sampler

```python
# Define the loop
def smc_inference_loop(loop_key, smc_kernel, init_state, schedule):
"""Run the tempered SMC algorithm.
"""

def body_fn(carry, lmbda):
carry_key, state = carry
carry_key, subkey = jax.random.split(carry_key)
new_state, info = smc_kernel(subkey, state, lmbda)
return (rng_key, new_state), (new_state, info)

_, (all_samples, _) = jax.lax.scan(body_fn, (loop_key, init_state), schedule)

return all_samples


# Run the SMC sampler
blackjax_samples = smc_inference_loop(rng_key, tempered.step, initial_smc_state, lambda_schedule)
```

## Plot the samples

```python
weights = np.array(blackjax_samples.weights)
samples = np.array(blackjax_samples.particles)
```

```python

import matplotlib.animation as animation
from IPython.display import HTML

plt.style.use('dark_background')
animation.embed_limit = 25
fig, ax = plt.subplots()
fig.tight_layout()

ax.set_axis_off()
ax.set_xlim(0, 250)
ax.set_ylim(0, 80)

scat = ax.scatter(ys_init, 80 - xs_init, s=1000 * 1 / n_samples)


# temp = ax.text(0.9, 0.9, r'$\lambda$: 0', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, fontsize=15)

def animate(i):
scat.set_offsets(np.c_[samples[i, :, 1], 80 - samples[i, :, 0]])
scat.set_sizes(1000 * weights[i])
# temp.set_text(r'$\lambda$: {:.1e}'.format(lambda_schedule[i]))
return scat,


ani = animation.FuncAnimation(fig, animate, repeat=True,
frames=n_temperatures, blit=True, interval=100)

# writer = animation.PillowWriter(fps=20,
# metadata=dict(artist='Me'),
# bitrate=1800)
# ani.save('scatter.gif', writer=writer)
```

![front_page_gif](./scatter.gif)
Binary file added docs/examples/scatter.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit bb225d3

Please sign in to comment.