Transfer Learning for Passive Sonar Classification using Pre-trained Audio and ImageNet Models
Amirmohammad Mohammadi, Tejashri Kelhe, Davelle Carreiro, Alexandra Van Dine and Joshua Peeples
Note: If this code is used, cite it: Amirmohammad Mohammadi, Tejashri Kelhe, Davelle Carreiro, Alexandra Van Dine and Joshua Peeples. (2024, August 30) Peeples-Lab/PANN_Models_DeepShip: Initial Release (Version v1.0).
Zendo
.https://zenodo.org/records/13886743
In this repository, we provide the paper and code for "Transfer Learning for Passive Sonar Classification using Pre-trained Audio and ImageNet Models."
The requirements.txt
file includes the necessary packages, and the packages will be installed using:
pip install -r requirements.txt
To get started, please follow the instructions in the Datasets folder to download the dataset.
Next, run demo_light.py
in Python IDE (e.g., Spyder)
The parameters can be set in the following script:
https://github.com/Peeples-Lab/PANN_Models_DeepShip
└── root directory
├── demo_light.py // Run this. Main demo file.
├── Demo_Parameters.py // Parameter file for the demo.
└── Datasets
├── Get_Preprocessed_Data.py // Resample the audio data and generate segments for the dataset.
├── SSDataModule.py // Load and preprocess the dataset.
└── Utils
├── Network_functions.py // Contains functions to initialize the modelS.
├── PANN_models.py // Contains the PANN modelS.
├── LitModel.py // Prepare the PyTorch Lightning framework.
This source code is licensed under the license found in the LICENSE
file in the root directory of this source tree.
This product is Copyright (c) 2024 A. Mohammadi, T. Kelhe, D. Carreiro, A. Dine and J. Peeples. All rights reserved.