-
Fast and differentiable MS-SSIM and SSIM for Paddle.
-
Structural Similarity (SSIM):
-
Multi-Scale Structural Similarity (MS-SSIM):
-
via pip
$ pip install paddle-msssim
-
via sources
$ git clone https://github.com/AgentMaker/Paddle-MSSSIM $ cd Paddle-MSSSIM $ python setup.py install
- paddlepaddle / paddlepaddle-gpu >= 2.0.0
-
Basic Usage
from paddle_msssim import ssim, ms_ssim, SSIM, MS_SSIM # X: (N,3,H,W) a batch of non-negative RGB images (0~255) # Y: (N,3,H,W) # calculate ssim & ms-ssim for each image ssim_val = ssim( X, Y, data_range=255, size_average=False) # return (N,) ms_ssim_val = ms_ssim( X, Y, data_range=255, size_average=False ) #(N,) # set 'size_average=True' to get a scalar value as loss. see tests/tests_loss.py for more details ssim_loss = 1 - ssim( X, Y, data_range=255, size_average=True) # return a scalar ms_ssim_loss = 1 - ms_ssim( X, Y, data_range=255, size_average=True ) # reuse the gaussian kernel with SSIM & MS_SSIM. ssim_module = SSIM(data_range=255, size_average=True, channel=3) # channel=1 for grayscale images ms_ssim_module = MS_SSIM(data_range=255, size_average=True, channel=3) ssim_loss = 1 - ssim_module(X, Y) ms_ssim_loss = 1 - ms_ssim_module(X, Y)
-
Normalized input
''' If you need to calculate MS-SSIM/SSIM on normalized images Please denormalize them to the range of [0, 1] or [0, 255] first ''' # X: (N,3,H,W) a batch of normalized images (-1 ~ 1) # Y: (N,3,H,W) X = (X + 1) / 2 # [-1, 1] => [0, 1] Y = (Y + 1) / 2 ms_ssim_val = ms_ssim( X, Y, data_range=1, size_average=False ) #(N,)
-
Enable nonnegative_ssim
-
For ssim, it is recommended to set
nonnegative_ssim=True
to avoid negative results. However, this option is set toFalse
by default to keep it consistent with tensorflow and skimage. -
For ms-ssim, there is no nonnegative_ssim option and the ssim reponses is forced to be non-negative to avoid NaN results.
-
-
Switch to the tests dir
$ cd ./tests
-
Benchmark
$ python comparisons_skimage_tf_torch.py
outputs(AMD Ryzen 4600H): =================================== Test SSIM =================================== ====> Single Image Repeat 10 times sigma=0.0 ssim_skimage=1.000000 (247.7732 ms), ssim_tf=1.000000 (277.2696 ms), ssim_paddle=1.000000 (179.4677 ms), ssim_torch=1.000000 (183.6994 ms) sigma=10.0 ssim_skimage=0.932399 (226.1620 ms), ssim_tf=0.932640 (257.2435 ms), ssim_paddle=0.932636 (163.2263 ms), ssim_torch=0.932400 (179.1418 ms) sigma=20.0 ssim_skimage=0.786023 (224.1826 ms), ssim_tf=0.786032 (279.2126 ms), ssim_paddle=0.786017 (158.3070 ms), ssim_torch=0.786027 (180.0890 ms) sigma=30.0 ssim_skimage=0.637174 (237.5582 ms), ssim_tf=0.637183 (267.6092 ms), ssim_paddle=0.637165 (167.9277 ms), ssim_torch=0.637178 (181.7910 ms) sigma=40.0 ssim_skimage=0.515865 (221.0388 ms), ssim_tf=0.515876 (264.3230 ms), ssim_paddle=0.515857 (170.7676 ms), ssim_torch=0.515869 (189.0941 ms) sigma=50.0 ssim_skimage=0.422551 (222.6846 ms), ssim_tf=0.422558 (273.1971 ms), ssim_paddle=0.422542 (168.3579 ms), ssim_torch=0.422554 (176.7442 ms) sigma=60.0 ssim_skimage=0.351337 (215.1536 ms), ssim_tf=0.351340 (270.5560 ms), ssim_paddle=0.351325 (164.3315 ms), ssim_torch=0.351340 (194.6781 ms) sigma=70.0 ssim_skimage=0.295752 (210.0273 ms), ssim_tf=0.295756 (272.1814 ms), ssim_paddle=0.295744 (169.3864 ms), ssim_torch=0.295755 (178.9230 ms) sigma=80.0 ssim_skimage=0.253164 (239.2978 ms), ssim_tf=0.253169 (260.8894 ms), ssim_paddle=0.253157 (184.7061 ms), ssim_torch=0.253166 (181.4640 ms) sigma=90.0 ssim_skimage=0.219240 (224.7329 ms), ssim_tf=0.219245 (270.3727 ms), ssim_paddle=0.219235 (172.3580 ms), ssim_torch=0.219242 (180.5838 ms) sigma=100.0 ssim_skimage=0.192630 (238.8582 ms), ssim_tf=0.192634 (261.4317 ms), ssim_paddle=0.192624 (166.0294 ms), ssim_torch=0.192632 (175.7241 ms) Pass! ====> Batch Pass! =================================== Test MS-SSIM =================================== ====> Single Image Repeat 10 times sigma=0.0 msssim_tf=1.000000 (534.9398 ms), msssim_paddle=1.000000 (231.7381 ms), msssim_torch=1.000000 (257.3238 ms) sigma=10.0 msssim_tf=0.991148 (525.1758 ms), msssim_paddle=0.991147 (213.8527 ms), msssim_torch=0.991101 (243.9299 ms) sigma=20.0 msssim_tf=0.967450 (523.3070 ms), msssim_paddle=0.967447 (217.2415 ms), msssim_torch=0.967441 (253.1073 ms) sigma=30.0 msssim_tf=0.934692 (538.5145 ms), msssim_paddle=0.934687 (215.2203 ms), msssim_torch=0.934692 (242.5429 ms) sigma=40.0 msssim_tf=0.897363 (558.0346 ms), msssim_paddle=0.897357 (219.1107 ms), msssim_torch=0.897362 (249.1027 ms) sigma=50.0 msssim_tf=0.859276 (524.8582 ms), msssim_paddle=0.859267 (232.4189 ms), msssim_torch=0.859275 (263.1328 ms) sigma=60.0 msssim_tf=0.820967 (512.8726 ms), msssim_paddle=0.820958 (223.7422 ms), msssim_torch=0.820965 (251.9713 ms) sigma=70.0 msssim_tf=0.784204 (529.6149 ms), msssim_paddle=0.784194 (213.1742 ms), msssim_torch=0.784203 (244.9676 ms) sigma=80.0 msssim_tf=0.748574 (545.3014 ms), msssim_paddle=0.748563 (222.8581 ms), msssim_torch=0.748572 (261.0413 ms) sigma=90.0 msssim_tf=0.715980 (538.3886 ms), msssim_paddle=0.715968 (214.4464 ms), msssim_torch=0.715977 (282.6247 ms) sigma=100.0 msssim_tf=0.683882 (540.9150 ms), msssim_paddle=0.683870 (218.5596 ms), msssim_torch=0.683880 (244.1856 ms) Pass ====> Batch Pass
-
Image comparison
SSIM = 1.0000 SSIM = 0.4225 SSIM = 0.1924 -
As a loss function
-
switch to the examples/as_loss dir
$ cd ./examples/as_loss
-
run the example script as_loss.py
$ python as_loss.py
Initial ssim: 0.9937540888786316 step: 1 ssim_loss: 0.993843 step: 2 ssim_loss: 0.993934 step: 3 ssim_loss: 0.994021 step: 4 ssim_loss: 0.994106 step: 5 ssim_loss: 0.994190 ... step: 81 ssim_loss: 0.999762 step: 82 ssim_loss: 0.999785 step: 83 ssim_loss: 0.999862 step: 84 ssim_loss: 0.999874 step: 85 ssim_loss: 0.999884 step: 86 ssim_loss: 0.999892 step: 87 ssim_loss: 0.999912
-
result
Input Output -
See examples/as_loss/as_loss.py for more details
-
-
Auto Encoder
- See examples/auto_encoder for more details
-
This repo is based on Pytorch MS-SSIM developed by @VainF.
-
Thanks to the above project and its developers.