-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Fatwir Mohammed
committed
Dec 11, 2024
1 parent
79ed149
commit 61be708
Showing
1 changed file
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
import os | ||
import warnings | ||
import tempfile | ||
from pathlib import Path | ||
from typing import Optional, Dict, Any, Union | ||
from argparse import Namespace | ||
import wandb | ||
from omegaconf import OmegaConf | ||
from pytorch_lightning.loggers import WandbLogger as Logger | ||
from pytorch_lightning.callbacks import ModelCheckpoint | ||
from pytorch_lightning.utilities.rank_zero import rank_zero_only | ||
from cyto_dl import utils | ||
import re | ||
|
||
log = utils.get_pylogger(__name__) | ||
|
||
class WandBLogger(Logger): | ||
def __init__(self, | ||
experiment_name: str = "lightning_logs", | ||
run_name: Optional[str] = None, | ||
config: Optional[Dict[str, Any]] = None, | ||
tags: Optional[Dict[str, Any]] = None, | ||
fault_tolerant: bool = False): | ||
super().__init__(project=experiment_name, name=run_name, config=config) | ||
self.tags = tags | ||
self.fault_tolerant = fault_tolerant | ||
|
||
# Apply tags if provided | ||
if tags: | ||
self.experiment.tags = tags | ||
|
||
@property | ||
def experiment(self): | ||
return super().experiment | ||
|
||
@rank_zero_only | ||
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace], mode="train") -> None: | ||
if hasattr(self.experiment, 'config'): | ||
self.experiment.config.update(params) | ||
|
||
# Save parameters to a YAML file in temp directory | ||
with tempfile.TemporaryDirectory() as tmp_dir: | ||
conf_path = Path(tmp_dir) / f"{mode}.yaml" | ||
config = OmegaConf.create(params) | ||
OmegaConf.save(config=config, f=conf_path) | ||
|
||
# Log YAML config as artifact | ||
self.experiment.save(str(conf_path)) | ||
|
||
@rank_zero_only | ||
def log_metrics(self, metrics: Dict[str, Any], step: Optional[int] = None): | ||
# Ensure correct log step if required | ||
self.experiment.log({**metrics, 'step': step} if step is not None else metrics) | ||
|
||
@rank_zero_only | ||
def after_save_checkpoint(self, ckpt_callback: ModelCheckpoint): | ||
try: | ||
self._after_save_checkpoint(ckpt_callback) | ||
except Exception as e: | ||
if self.fault_tolerant: | ||
warnings.warn( | ||
f"`WandBLogger.after_save_checkpoint` failed with exception {e}\n\nContinuing..." | ||
) | ||
else: | ||
raise e | ||
|
||
@rank_zero_only | ||
def _after_save_checkpoint(self, ckpt_callback: ModelCheckpoint) -> None: | ||
run = self.experiment | ||
artifact_path = "checkpoints" | ||
|
||
if ckpt_callback.monitor: | ||
artifact_path = f"checkpoints/{ckpt_callback.monitor}" | ||
|
||
try: | ||
artifact = run.use_artifact(f'{artifact_path}:latest', type='model') | ||
existing_ckpts = {artifact_file.name for artifact_file in artifact.manifest.entries.values()} | ||
except Exception: | ||
existing_ckpts = set() | ||
|
||
top_k_ckpts = {os.path.basename(path) for path in ckpt_callback.best_k_models.keys()} | ||
|
||
to_delete = existing_ckpts - top_k_ckpts | ||
to_upload = top_k_ckpts - existing_ckpts | ||
|
||
for ckpt in to_delete: | ||
checkpoint_path = os.path.join(ckpt_callback.dirpath, ckpt) | ||
if os.path.exists(checkpoint_path): | ||
os.remove(checkpoint_path) | ||
log.info(f"Deleted old checkpoint: {checkpoint_path}") | ||
else: | ||
warnings.warn(f"Checkpoint {checkpoint_path} not found for deletion.") | ||
|
||
for ckpt in to_upload: | ||
local_checkpoint_path = os.path.join(ckpt_callback.dirpath, ckpt) | ||
log.info(f"Saving {ckpt} locally at: {local_checkpoint_path}") | ||
|
||
if os.path.exists(local_checkpoint_path): | ||
log.info(f"Checkpoint {ckpt} saved locally at: {local_checkpoint_path}") | ||
|
||
self.log_metrics({"checkpoint_saved": os.path.basename(ckpt), "status": "uploaded locally"}, step=None) | ||
|
||
filepath = ckpt_callback.best_model_path | ||
local_best_path = Path(ckpt_callback.dirpath) / "best.ckpt" | ||
os.link(filepath, local_best_path) | ||
log.info(f"Best model checkpoint saved locally at: {local_best_path}") | ||
self.log_metrics({"best_model_checkpoint": str(local_best_path), "status": "saved locally"}, step=None) | ||
local_best_path.unlink() | ||
|
||
else: | ||
filepath = ckpt_callback.best_model_path | ||
if ckpt_callback.save_top_k == 1: | ||
last_path = Path(filepath).with_name("last.ckpt") | ||
os.link(filepath, last_path) | ||
|
||
log.info(f"Last model checkpoint saved locally at: {last_path}") | ||
|
||
self.log_metrics({"last_model_checkpoint": str(last_path), "status": "saved locally"}, step=None) | ||
last_path.unlink() | ||
else: | ||
log.info(f"Saving other checkpoints locally without W&B upload: {filepath}") | ||
|
||
@rank_zero_only | ||
def finalize(self, status: str): | ||
# Finish the WandB run | ||
self.experiment.finish() |