Skip to content

Commit

Permalink
update api_doc.rst (#58)
Browse files Browse the repository at this point in the history
  • Loading branch information
bachelor-dou authored Nov 26, 2024
1 parent 00e3841 commit 6b2812d
Showing 1 changed file with 152 additions and 0 deletions.
152 changes: 152 additions & 0 deletions sources/pytorch/api_doc.rst
Original file line number Diff line number Diff line change
Expand Up @@ -158,3 +158,155 @@ PyTorch-NPU 除了提供了 PyTorch 官方算子实现之外,也提供了大
>>> y = torch_npu.npu_anchor_response_flags(x, [60, 60], [2, 2], 9)
>>> y.shape
torch.Size([32400])
.. py:function:: npu_apply_adam(beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, use_locking, use_nesterov, out = (var, m, v))
:module: torch_npu

adam结果计数。

:param Scalar beta1_power: beta1的幂
:param Scalar beta2_power: beta2的幂
:param Scalar lr: 学习率
:param Scalar beta1: 一阶矩估计值的指数衰减率
:param Scalar beta2: 二阶矩估计值的指数衰减率
:param Scalar epsilon: 添加到分母中以提高数值稳定性的项数
:param Tensor grad: 梯度
:param Bool use_locking: 设置为True时使用lock进行更新操作
:param Bool use_nesterov: 设置为True时采用nesterov更新
:param Tensor var: 待优化变量。
:param Tensor m: 变量平均值。
:param Tensor v: 变量方差。

.. py:function:: npu_batch_nms(self, scores, score_threshold, iou_threshold, max_size_per_class, max_total_size, change_coordinate_frame=False, transpose_box=False) -> (Tensor, Tensor, Tensor, Tensor)
:module: torch_npu

根据batch分类计算输入框评分,通过评分排序,删除评分高于阈值(iou_threshold)的框,支持多批多类处理。通过NonMaxSuppression(nms)操作可有效删除冗余的输入框,提高检测精度。NonMaxSuppression:抑制不是极大值的元素,搜索局部的极大值,常用于计算机视觉任务中的检测类模型。

:param Tensor self: 必填值,输入框的tensor,包含batch大小,数据类型Float16,输入示例:[batch_size, num_anchors, q, 4],其中q=1或q=num_classes
:param Tensor scores: 必填值,输入tensor,数据类型Float16,输入示例:[batch_size, num_anchors, num_classes]
:param Float32 score_threshold: 必填值,指定评分过滤器的iou_threshold,用于筛选框,去除得分较低的框,数据类型Float32
:param Float32 iou_threshold: 必填值,指定nms的iou_threshold,用于设定阈值,去除高于阈值的的框,数据类型Float32
:param Int max_size_per_class: 必填值,指定每个类别的最大可选的框数,数据类型Int
:param Int max_total_size: 必填值,指定每个batch最大可选的框数,数据类型Int
:param Bool change_coordinate_frame: 可选值, 是否正则化输出框坐标矩阵,数据类型Bool(默认False)
:param Bool transpose_box: 可选值,确定是否在此op之前插入转置,数据类型Bool。True表示boxes使用4,N排布。 False表示boxes使用过N,4排布

输出说明:
:param Tensor nmsed_boxes: shape为(batch, max_total_size, 4)的3D张量,指定每批次输出的nms框,数据类型Float16
:param Tensor nmsed_scores: shape为(batch, max_total_size)的2D张量,指定每批次输出的nms分数,数据类型Float16
:param Tensor nmsed_classes: shape为(batch, max_total_size)的2D张量,指定每批次输出的nms类,数据类型Float16
:param Tensor nmsed_num: shape为(batch)的1D张量,指定nmsed_boxes的有效数量,数据类型Int32

:rtype: Tensor

示例:

.. code-block:: python
:linenos:
>>> boxes = torch.randn(8, 2, 4, 4, dtype = torch.float32).to("npu")
>>> scores = torch.randn(3, 2, 4, dtype = torch.float32).to("npu")
>>> nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_num = torch_npu.npu_batch_nms(boxes, scores, 0.3, 0.5, 3, 4)
>>> nmsed_boxes
>>> nmsed_scores
>>> nmsed_classes
>>> nmsed_num
.. py:function:: npu_bert_apply_adam(lr, beta1, beta2, epsilon, grad, max_grad_norm, global_grad_norm, weight_decay, step_size=None, adam_mode=0, *, out=(var,m,v))
:module: torch_npu

adam结果计数

:param Tensor var: float16或float32类型张量
:param Tensor m: 数据类型和shape与exp_avg相同
:param Tensor v: 数据类型和shape与exp_avg相同
:param Scalar lr: 数据类型与exp_avg相同
:param Scalar beta1: 数据类型与exp_avg相同
:param Scalar beta2: 数据类型与exp_avg相同
:param Scalar epsilon: 数据类型与exp_avg相同
:param Tensor grad: 数据类型和shape与exp_avg相同
:param Scalar max_grad_norm: 数据类型与exp_avg相同
:param Scalar global_grad_norm: 数据类型与exp_avg相同
:param Scalar weight_decay: 数据类型与exp_avg相同
:param Tensor step_size: 默认值为None - shape为(1, ),数据类型与exp_avg一致
:param Int adam_mode: 选择adam模式。0表示“adam”, 1表示“mbert_adam”, 默认值为0

关键字参数:
out (Tensor,可选) - 输出张量。

示例:

.. code-block:: python
:linenos:
>>> var_in = torch.rand(321538).uniform_(-32., 21.).npu()
>>> m_in = torch.zeros(321538).npu()
>>> v_in = torch.zeros(321538).npu()
>>> grad = torch.rand(321538).uniform_(-0.05, 0.03).npu()
>>> max_grad_norm = -1.
>>> beta1 = 0.9
>>> beta2 = 0.99
>>> weight_decay = 0.
>>> lr = 0.
>>> epsilon = 1e-06
>>> global_grad_norm = 0.
>>> var_out, m_out, v_out = torch_npu.npu_bert_apply_adam(lr, beta1, beta2, epsilon, grad, max_grad_norm, global_grad_norm, weight_decay, out=(var_in, m_in, v_in))
>>> var_out
tensor([ 14.7733, -30.1218, -1.3647, ..., -16.6840, 7.1518, 8.4872], device='npu:0')
.. py:function:: npu_bmmV2(self, mat2, output_sizes) -> Tensor
:module: torch_npu

将矩阵“a”乘以矩阵“b”,生成“a*b”。支持FakeTensor模式

:param Tensor self: 2D或更高维度矩阵张量。数据类型:float16、float32、int32。格式:[ND, NHWC, FRACTAL_NZ]
:param Tensor mat2: 2D或更高维度矩阵张量。数据类型:float16、float32、int32。格式:[ND, NHWC, FRACTAL_NZ]
:param ListInt[] output_sizes: 输出的shape,用于matmul的反向传播

:rtype: Tensor

示例:

.. code-block:: python
:linenos:
>>> mat1 = torch.randn(10, 3, 4).npu()
>>> mat2 = torch.randn(10, 4, 5).npu()
>>> res = torch_npu.npu_bmmV2(mat1, mat2, [])
>>> res.shape
torch.Size([10, 3, 5])
.. py:function:: npu_bounding_box_decode(rois, deltas, means0, means1, means2, means3, stds0, stds1, stds2, stds3, max_shape, wh_ratio_clip) -> Tensor
:module: torch_npu

根据rois和deltas生成标注框。自定义FasterRcnn算子

:param Tensor rois: 区域候选网络(RPN)生成的region of interests(ROI)。shape为(N,4)数据类型为float32或float16的2D张量。“N”表示ROI的数量, “4”表示“x0”、“x1”、“y0”和“y1”
:param Tensor deltas: RPN生成的ROI和真值框之间的绝对变化。shape为(N,4)数据类型为float32或float16的2D张量。“N”表示错误数,“4”表示“dx”、“dy”、“dw”和“dh”
:param Float means0: index
:param Float means1: index
:param Float means2: index
:param Float means33: index, 默认值为[0,0,0,0], "deltas" = "deltas" x "stds" + "means"
:param Float stds0: index
:param Float stds1: index
:param Float stds2: index
:param Float stds3: index, 默认值:[1.0,1.0,1.0,1.0], deltas" = "deltas" x "stds" + "means"
:param ListInt[2] max_shape: shape[h, w], 指定传输到网络的图像大小。用于确保转换后的bbox shape不超过“max_shape”
:param Float wh_ratio_clip: 当前水平的步长
:param Int num_base_anchors: “dw”和“dh”的值在(-wh_ratio_clip, wh_ratio_clip)范围内

:rtype: Tensor

示例:

.. code-block:: python
:linenos:
>>> rois = torch.tensor([[1., 2., 3., 4.], [3.,4., 5., 6.]], dtype = torch.float32).to("npu")
>>> deltas = torch.tensor([[5., 6., 7., 8.], [7.,8., 9., 6.]], dtype = torch.float32).to("npu")
>>> output = torch_npu.npu_bounding_box_decode(rois, deltas, 0, 0, 0, 0, 1, 1, 1, 1, (10, 10), 0.1)
>>> output
tensor([[2.5000, 6.5000, 9.0000, 9.0000],
[9.0000, 9.0000, 9.0000, 9.0000]], device='npu:0')

0 comments on commit 6b2812d

Please sign in to comment.